President Joe Biden recently signed into law a sweeping climate bill that will have very little (if any) impact on addressing global warming (a reduction of 0.028 degrees F by 2100). While there are tax credits in the bill for construction of new nuclear power plants over the next 10 years, only two are planned to add to the existing 93 facilities operating today which provide 18% of the U.S. energy production. Most of the funding in the bill is targeted at tax credits for EVs and incentives for renewable sources such and wind and solar which are subject to interruption. Nuclear energy holds enormous promise to offset the carbon emissions associated with fossil fuel energy production and can provide reliable base load power, but it is still plagued by negative public perceptions related to safety and the potential for weapons proliferation.
Is it time to reimagine our approach to sourcing clean energy in general, and nuclear power in particular while at the same time addressing climate change? Ajay Kothari thinks so – by research and development and eventual commercialization of nuclear power plants fueled by thorium rather than uranium. Dr. Kothari describes his vision in the August 1, 2022 issue of The Space Review. He believes that this powerful and sustainable power source “…will solve the world’s energy problem a thousand times over with zero carbon dioxide emission during operation, and it may be the cheapest form of energy production for us.”
“One ton of thorium is roughly equivalent to five million barrels of oil”
Thorium is abundant in the Earths crust making it relatively cheap and therefore, more affordable. It is only slightly radioactive, far less so then uranium and does not contain fissile material making it much safer and easier to moderate (i.e. switch off) in the case of an accident. This would prevent meltdowns unlike conventional reactors which have coolants that operate at much higher pressures and need far more complicated engineering safeguards to prevent disasters.
Thorium molten salt reactors are inherently safe. Flibe Energy is designing a Liquid Fluoride Thorium Reactor (LFTR) and according to the company’s website, “…any increase in operating temperature reduces the density of the salt which in turn, causes the reaction to slow and the temperature to fall. LFTR is also designed with a simple frozen salt plug in the bottom of the reactor core vessel. In the event of power loss to the reactor, the frozen salt plug quickly melts and the fuel salt drains down into a storage tank below – causing a termination in the fission process.”
Once developed for energy production on Earth, the same technology has applications in space. While it would not be used in a booster during launch, a molten salt thorium reactor upper stage, like that shown in the illustration above, could provide an efficient 700 second specific impulse by heating hydrogen as fuel for advanced propulsion for the next few decades until fusion energy comes on line. An added benefit would be that the upper stage reactor could also be used to provide energy at the destination, for example on the Moon or Mars.
“One kilogram of thorium taken from Earth [to the Moon] … can support a 2.6 thermal megawatt plant for a year.”
A thorium reactor was developed at Oak Ridge National Laboratory (ORNL) back in the 1960s but was never commercialized after the then Atomic Energy Commission favored plutonium fast-breeder reactors.
There are challenges to overcome. For example, the thorium fuel cycle is complicated and still produces some radioactive waste, but far less and with much shorter half life when compared to conventional uranium nuclear reactors. But the benefits of this clean, abundant and affordable energy source could make investment by the public and private sector worth the effort.
“With US reserves at 595,000 tons of thorium, we have enough to last us 600 years at current rates.”
Kothari has been a long time proponent of Thorium reactors. He recently gave a talk on the molten salt thorium reactor via Zoom for the University of Maryland now available on YouTube. You can also hear an in-depth discussion of the technology on The Space Show when he was a guest back in October 2021 and when he returns to the show September 13, 2022.
Dr. Kothari agreed to take a deeper dive with SSP into what he calls “Thor – The Life-Saver” through an email interview. If you have questions I didn’t cover about thorium molten salt reactors please leave a comment.
SSP: Dr. Kothari, thank you for taking the time to answer my questions. With respect to the public’s fear of nuclear power in general, the safety of thorium molten salt reactors is certainly an argument in favor to the technology. But aren’t there still risks of nuclear proliferation?
AK: We have more than 400 reactors in more than 40 countries worldwide. We found ways to have countries develop their reactors but have proliferation controls. This idea, the TMSR, creates no Plutonium, and would be easier to monitor. Besides, whether we want [to] or not, other countries WILL do it. Many are. Also we can develop the technology for ourselves and [for] friendly countries OR at the very least, USE IT FOR OURSELVES! How can we deny this incredible opportunity for our (US) populace? Is that fair?
SSP: Flibe Energy appears to be the only U.S. company pursuing LFTR technology. Chicago based Clean Core is focusing on thorium-based fuels to be used in existing pressurized heavy-water reactor designs. What do you think of these two company’s approaches and are you aware of any other thorium reactor development efforts in the U.S, either in private industry or academia?
AK: MIT is developing tech to resolve some of the TMSR issues that would be quite helpful [SSP found this story from MIT Nuclear Reactor Laboratory on deployment of its “…nuclear reactor (MITR) and related testing apparatus as a proving ground for the materials and processes critical to molten-salt-cooled reactors.”]. Others are shown in the chart below with some of them being US based (bottom right).
SSP: How difficult would it be to adapt this technology for space propulsion and power applications and is it so far off that fusion energy may be available by the time development efforts come to fruition?
AK: In my opinion, …. controlled fusion may be 100, 200 or 50 years away. We have a valley of death … between now and then. This TMSR can fill the gap but can also be used for space propulsion as my diagram above shows. Sure, the TRL of it needs to be brought up, but that’s what we are here for. It would be less heavy than [the] NERVA idea, especially if the chemical processing plant is separated and U233 is used for space propulsion rather than Th232. This would be the idea. The rate of fission is then controlled by the graphite rod moderators/controllers.
SSP: China has been working on a LFTR since 2011 and was recently cleared to start operating the reactor which is a direct descendent of the original experimental design that ORNL studied in the 1960s. It would appear that the Chinese have a significant head start. Is this concerning?
AK; Absolutely. All I can say is that we are idiots.
SSP: One of the disadvantages of thorium reactors is that large upfront costs are needed due to the significant amount of testing and licensing work for qualification of commercial reactors. The reactors also involve high fuel fabrication and reprocessing costs. How would you address these issues to attract investors?
AK: This idea really is a golden nugget, so to speak. The way to attract investors is to bring the TRL up with government (DoE, NASA and DoD) funds. When the light at the end of the tunnel is seen by investors, they will jump in with both feet. It may still be 5-10 years away but if we do not do it soon, (1) it will always remain so, and (2) some other country (China) or many other countries will DEFINITELY move ahead of us!
SSP: Another disadvantage is the presence of a significant level of gamma ray emissions due to Uranium-232 in the fuel cycle. How will this be dealt with safely?
AK: The Gamma ray radiation occurs from Protactinium 233 absorbing another neutron (before it Beta decays) to become Pa234 If it is separated in a chemical processing plant, it would remain easier to handle. From Wiki[pedia]: “The contamination could also be avoided by using a molten-salt breeder reactor and separating the 233Pa before it decays into 233U)”.
SSP: What regulatory and policy changes are needed to realize this technology in the U.S.?
AK: [The] NRC and DoE should allow smaller (~2 MW) size experimental reactors at Universities and research institutions right now.
SSP: On a related note, what efforts can leaders in private industry, academia and government undertake to begin the research and technology needed to commercialize thorium molten salt reactors.
AK: There are a few uncertain items in this nuclear process that Universities, small businesses and government research institutions can resolve. Government agencies need to fund SBIR/STTR type of initiatives to address the following technical issues:
- The sustainability of the heat exchangers whether they are to be made of Hastelloy-N or some other composite. This characterization is needed w.r.t. neutron flux intensity, temperature reached and time exposed (in months to years)
- The same as above for reactor containment vessels and pipes carrying the hot molten salt.
- Chemical separation for in-line or off-line work for Protactinium and U233.
- Tritium mitigation ideas (probably using CO2 in closed loop for electricity generation) or sequestration of it for later use in fusion when and if available. Designing and demonstrating tritium separators are key elements of DOE’s solid fuel MSR program at both universities and national laboratories
- Gamma ray mitigation or reduction
Thorium doesn’t spontaneously undergo fission – when an atom’s nucleus splits and releases energy that can generate electricity. Left to its own devices it decays very slowly, giving off alpha radiation that can’t even penetrate human skin, so holidaymakers don’t need to worry about sunbathing on thorium-rich beaches.
We don’t have as much experience with Thorium. The nuclear industry is quite conservative, and the biggest problem with Thorium is that we are lacking in operational experience with it. When money is at stake, it’s difficult to get people to change from the norm.
Irradiated Thorium is more dangerously radioactive in the short term. The Th-U cycle invariably produces some U-232, which decays to Tl-208, which has a 2.6 MeV gamma ray decay mode. Bi-212 also causes problems. These gamma rays are very hard to shield, requiring more expensive spent fuel handling and/or reprocessing.
Thorium doesn’t work as well as U-Pu in a fast reactor. While U-233 an excellent fuel in the slow-neutron regime, it is between U-235 and Pu-239 in the fast spectrum. So for reactors that require excellent neutron economy (such as breed-and-burn concepts), Thorium is not ideal.
Proliferation Issues
Thorium is generally accepted as proliferation resistant compared to U-Pu cycles. The problem with plutonium is that it can be chemically separated from the waste and perhaps used in bombs. It is publicly known that even reactor-grade plutonium can be made into a bomb if done carefully. By avoiding plutonium altogether, thorium cycles are superior in this regard.
Besides avoiding plutonium, Thorium has additional self-protection from the hard gamma rays emitted due to U-232 as discussed above. This makes stealing Thorium based fuels more challenging. Also, the heat from these gammas makes weapon fabrication difficult, as it is hard to keep the weapon pit from melting due to its own heat. Note, however, that the gammas come from the decay chain of U-232, not from U-232 itself. This means that the contaminants could be chemically separated and the material would be much easier to work with. U-232 has a 70 year half-life so it takes a long time for these gammas to come back.
The one hypothetical proliferation concern with Thorium fuel though, is that the Protactinium can be chemically separated shortly after it is produced and removed from the neutron flux (the path to U-233 is Th-232 -> Th-233 -> Pa-233 -> U-233). Then, it will decay directly to pure U-233. By this challenging route, one could obtain weapons material. But Pa-233 has a 27 day half-life, so once the waste is safe for a few times this, weapons are out of the question. So concerns over people stealing spent fuel are largely reduced by Th, but the possibility of the owner of a Th-U reactor obtaining bomb material is not.
Molten Salt Reactors
See our full page on Molten Salt Reactors for more info.
One especially cool possibility suitable for the slow-neutron breeding capability of the Th-U fuel cycle is the molten salt reactor (MSR), or as one particular MSR is commonly known on the internet, the Liquid Fluoride Thorium Reactors (LFTR). In these, fuel is not cast into pellets, but is rather dissolved in a vat of liquid salt. The chain reaction heats the salt, which naturally convects through a heat exchanger to bring the heat out to a turbine and make electricity. Online chemical processing removes fission product neutron poisons and allows online refueling (eliminating the need to shut down for fuel management, etc.). None of these reactors operate today, but Oak Ridge had a test reactor of this type in the 1960s called the Molten Salt Reactor Experiment [Wikipedia] (MSRE). The MSRE successfully proved that the concept has merit and can be operated for extended amounts of time. It competed with the liquid metal cooled fast breeder reactors (LMFBRs) for federal funding and lost out. Alvin Weinberg discusses the history of this project in much detail in his autobiography, The First Nuclear Era [amazon.com], and there is more info available all over the internet. These reactors could be extremely safe, proliferation resistant, resource efficient, environmentally superior (to traditional nukes, as well as to fossil fuel obviously), and maybe even cheap. Exotic, but successfully tested. Who’s going to start the startup on these? (Just kidding, there are already like 4 startups working on them, and China is developing them as well).
Loss of coolant accident consequences are significantly different than for Light Water Reactors
– Low driving pressure and lack of phase change fluids
– Guard vessels employed on some designs
– Planned vessel drain down to cooled, criticality-safe drain tanks on some designs
I support this idea. However, while I realize that the article is a sales pitch for the thorium molten salt reactor and thus why they excessively downplay the benefits of electric vehicles and solar and wind power and actually perpetuate some of the negative myths around them, I feel this is not a useful way to promote these reactors–there are ways to mitigate, for example, interruptions to sun and wind electric production, including methods for solar cells to generate energy at night or from the rain . And EVs help out as well, some sources say EVs will lead to a 92% fall in greenhouse gases by 2050. Of course, the solar and wind power advocates have their sale pitches as well. The truth is somewhere in the middle. This is not a time for one-upmanship (nor does such an approach help convince people–attack, and they get defensive and shut down). We need all approaches, including the thorium molten salt reactor. I think this reactor is definitely something worth looking into, including for space applications. So much so that one does not need to resort to attacking other approaches. BTW, this report says we have enough thorium to meet the (present) energy needs of the U.S. for 600 years. Sun and wind will last essentially for the life of the planet. One could argue that, then, is the way to go–put our energies into mitigating even further power storage issues (for when the sun is not out or the wind is not blowing) and producing energy even when the light is dim and the wind weak (solutions are already being put forward, as mentioned earlier). However, some areas will benefit more from a thorium reactor; and if we depend upon a combination of solar, wind, tidal, geothermal, and thorium power production, the thorium will last even longer than 600 years as we will not have to rely on it as much. I support the thorium molten salt reactor idea for Earth and space applications, but I also support solar, wind, tidal, etc. ideas as well. And they do not have to compete with each other, they absolutely complement each other.