Lunar-derived propellant fueling a cislunar economy may be competitive with Earth

AI generated image depicting a propellant factory on the Moon. Credits: DALL-E

The economics of an in-space industry based on lunar-derived rocket propellant was examined by Florida Space Institute planetary physicist Philip Metzger in a prepublication paper submitted to arXiv on March 16 . The study will be published in the June issue of Acta Astronautica. Many skeptics of this approach believe that with launch costs plummeting, driven down primarily due to reusability pioneered by SpaceX, it will be cheaper to power the nascent cislunar economy with propellant launched from Earth rather then fuel derived from lunar ice mining.

In his analysis, Metzger examines a cislunar economy of companies that operate geostationary satellites which need to purchase boost services using orbital transfer vehicles fueled by cryogenic hydrogen and oxygen. The question is, would sourcing H2/O2 from ice mined on the Moon be competitive with launching propellant from Earth. He notes that previous studies that favored Earth to solve this problem were flawed because they compared the different technologies for mining water on the Moon (e.g. strip mining, borehole sublimation, tent sublimation, or excavation with beneficiation) rather than analyzing the economics of the cis-lunar economy as a sector.

With that approach in mind, Metzger develops an economic model with figures of merit to assess how various technologies for ice mining compare to Earth sourced propellant. One such parameter is the “gear ratio” G, which in the parlance of orbital dynamics, is the ratio of the mass of hardware and propellant before versus after moving between two locations in accordance with the rocket equation. The other key metric is the production mass ratio Ø, which is the mass of propellant delivered to a specific location divided by the mass of the capital equipment needed to produce the fuel.

The “tent sublimation technology” mentioned in the paper was invented by George Sowers and is featured in his 2019 NIAC Phase I Final Report on ice mining from cold bodies in the solar system covered by SSP previously.

Although G is constrained by the laws of physics, reasonable values are possible and a value of Ø ≥ 35 is the threshold above which lunar propellant wins out. The tent sublimation technology is estimated to have Ø over 400, an order of magnitude higher than the minimum to gain an advantage. Metzger’s new approach took into account that launch costs will eventually come down as far as possible but even then, found that lunar propellant can be produced at a competitive advantage. The only caveat is validation of the TRL and reliability of ice mining technologies.

“Lunar-derived rocket propellant can outcompete rocket propellant launched from Earth, no matter how low launch costs go.”

Although not included in Metzger’s study, a method for extraction of water from lunar regolith is heating by low power microwaves. A recent study found that this technology is effective for extracting water from simulated lunar soil laced with ice. It would be interesting to see if Ø for this technique exceeds the advantage threshold.

Developing the business case for lunar water is the first step in rapidly bootstrapping an off-Earth economy.  Metzger has written about this previously where he sees robotics, 3D printing and in situ resource utilization being leveraged to accelerate growth of a solar system civilization.

The limits of space settlement – Pancosmorio Theory and its implications

Artist’s impression of the interior of an O’Neill Cylinder space settlement near the endcap. Credits: Don Davis courtesy of NASA

Its a given that space travel and settlement are difficult. The forces of nature conspire against humans outside their comfortable biosphere and normal gravity conditions. To ascertain just how difficult human expansion off Earth will be, a new quantitative method of human sustainability called the Panscosmorio Theory has been developed by Lee Irons and his daughter Morgan in a paper in Frontiers of Astronomy and Space Sciences. The pair use the laws of thermal dynamics and the effects of gravity upon ecosystems to analyze the evolution of human life in Earth’s biosphere and gravity well. Their theory sheds light on the challenges and conditions required for self restoring ecosystems to sustain a healthy growing human population in extraterrestrial environments.

“Stated simply, sustainable development of a human settlement requires a basal ecosystem to be present on location with self-restoring order, capacity, and organization equivalent to Earth.”

The theory describes the limits of space settlement ecosystems necessary to sustain life based on sufficient area and availability of resources (e.g. sources of energy) defining four levels of sustainability, each with increasing supply chain requirements.

Level 1 sustainability is essentially duplicating Earth’s basal ecosystem. Under these conditions a space settlement would be self-sustaining requiring no inputs of resources from outside. This is the holy grail – not easily achieved. Think terraforming Mars or finding an Earth-like planet around another star.

Level 2 is a bit less stable with insufficient vitality and capacity resulting in a brittle ecosystem that is subject to blight and loss of diversity when subjected to disturbances. Humans could adapt in a settlement under these conditions but would required augmentation by “…a minimal supply chain to replace depleted resources and specialized technology.”

Level 3 sustainability has insufficient area and power capacity to be resilient against cascade failure following disturbances. In this case the settlement would only be an early stage outpost working toward higher levels of sustainability, and would require robust supplemental supply chains to augment the ecosystem to support human life.

Level 4 sustainability is the least stable necessitating close proximity to Earth with limited stays by humans and would require an umbilical supply chain supplementing resources for human life support, and would essentially be under the umbrella of Earth’s basal ecosystem. The International Space Station and the planned Artemis Base Camp would fall into this category.

Understanding the complex web of interactions between biological, physical and chemical processes in an ecosystem and predicting early signs of instability before catastrophic failure occurs is key. Curt Holmer has modeled the stability of environmental control and life support systems for smaller space habitats. Scaling these up and making them robust against disturbances transitioning from Level 2 to 1 is the challenge.

How does gravity fit in? The role of gravity in the biochemical and physiological functions of humans and other lifeforms on Earth has been a key driver of evolution for billions of years. This cannot be easily changed, especially for human reproduction. But even if we were able to provide artificial gravity in a rotating space settlement, the authors point out that reproducing the atmospheric pressure gradients that exist on Earth as well as providing sufficient area, capacity and stability to achieve Level 1 ecosystem sustainability will be very difficult.

Peter Hague agrees that living outside the Earth’s gravity well will be a significant challenge in a recent post on Planetocracy. He has the view, held by many in the space settlement community, that O’Neill colonies are a long way off because they would require significant development on the Moon (or asteroids) and vast construction efforts to build the enormous structures as originally envisioned by O’Neill. Plus, we may not be able to easily replicate the complexity of Earth’s ecosystem within them, as intimated by the Panscosmorio Theory. In Hague’s view Mars settlement may be easier.

Should we determine the Gravity Rx? Some space advocates believe that knowledge of this important parameter, especially for mammalian reproduction, will inform the long term strategy for permanent space settlements. If we discover, through ethical clinical studies starting with rodents and progressing to higher mammalian animal models, that humans cannot reproduce in less than 1G, we would want to know this soon so that plans for the extensive infrastructure to produce O’Neill colonies providing Earth-normal artificial gravity can be integrated into our space development strategy.

Others believe why bother? We know that 1G works. Is there a shortcut to realizing these massive rotating settlements without the enormous efforts as originally envisioned by Gerard K. O’Neill? Tom Marotta and Al Globus believe there is an easier way by starting small and Kasper Kubica’s strategy may provide a funding mechanism for this approach. Given the limits of sustainability of the ecosystems in these smaller capacity rotating settlements, it definitely makes sense to initially locate them close to Earth with reliable supply chains anticipated to be available when Starship is fully developed over the next few years.

Companies like Gravitics, Vast and Above: Space Development Corporation (formally Orbital Assembly Corporation) are paving the way with businesses developing artificial gravity facilities in LEO. And last week, Airbus entered the fray with plans for Loop, their LEO multi-purpose orbital module with a centrifuge for “doses” of artificial gravity scheduled to begin operations in the early 2030s. Panscosmorio Theory not withstanding, we will definitely test the limits of space settlement sustainability and improve over time.

Listen to Lee and Morgan Irons discuss their theory with David Livingston on The Space Show.