James Dewar believes it is time to reconsider the solid core nuclear thermal rocket, like what was developed in the 1960s under the NASA’s Nuclear Engine for Rocket Vehicle Application (NERVA) Project, as a high thrust cargo vehicle for opening up the solar system and for solving problems here on Earth. A tall order, as he explained in his appearance on The Space Show (TSS) October 26, because nuclear propulsion within the atmosphere and close to the Earth was taken off the table by NASA over 60 years ago and research on nuclear rockets was put on ice after 1973 until recently. Dewar worked on nuclear policy at the Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy. He has documented his views in a paper linked on TSS blog.
What is old could be new again. NERVA had a very light high power solid core reactor with Uranium 235 fuel in a graphite matrix creating nuclear fission to heat hydrogen to produce rocket thrust. The specific impulse (efficiency in conversion of fuel to thrust) of the first iteration of NERVA was about 825 seconds, or almost twice that of chemical rockets. More efficient versions were on the drawing board. The compact design (35×52-inch core) lends itself to low development costs and would be inexpensive to fabricate and operate. It has the potential to lower launch costs significantly and research could pick up where it left off nearly 50 years ago.
So why is NASA announcing development of new nuclear thermal propulsion systems for missions to Mars in the distant future? The reactor cores like those used in Project NERVA are known technologies that can it be adapted for other useful applications and it can be done safely on Earth. There could be a large niche market for energy production in remote rural areas such as Alaska or Canada, or supplementing base load utilities during power disruptions due to severe weather events. With their high operating temperatures, these reactors can replace fossil fuel power generation for manufacturing industries that require process heat such as steel/aluminum or chemical production, which cannot be powered efficiently by wind or solar energy. There may also be a cost advantage and environmental benefit to replacing carbon based fuels for powering maritime oceangoing vessels.
“Even the Greens may support it…What if a reestablished program included making a nuclear propelled 1000-foot tanker sized skimmer to rid the oceans of plastic?”
Additionally, a nuclear reactor of this type could service manufacturing centers in both space and on Earth. It could inexpensively launch satellites and provide power for environmental and solar weather stations to monitor and protect Earth’s health. Dewar even thinks that the solid core nuclear reactor could be used to address the growing global problem of industrial waste by melting it down to its chemical constituents and then separating out commercially valuable components from the actual waste prior to permanent disposal. The low launch costs of the nuclear rocket may actually make disposal of waste off Earth economically feasible. Whole clean industries could spring up around these process centers. So this type of reactor could address many national goals and objectives rather than just crewed missions to Mars or deep space.
But what about the elephant in the room? Safety, radiation and fear of all things “nuclear”? Would the public support ground based testing if a NERVA type solid core nuclear thermal rocket program were restarted? Dewar covers this in detail in his book The Nuclear Rocket, Making Our Planet Green, Peaceful and Prosperous. As reported by the EPA in 1974, “…It is concluded that off-site exposures or doses from nuclear rocket engine tests at [the] NRDS [Nuclear Rocket Development Station] have been below applicable guides.”
What about regular launches of a nuclear rocket in the Earth’s atmosphere? First, the launch range proposed would be in an isolated ocean area over water to eliminate the possibility of failure or impact in populated regions. Second, the nuclear core would be enclosed in a reentry vehicle type cocoon for safe recovery in the event of an accident. Third, the nuclear engine is envisioned as an upper stage and would not be “turned on” until boosted high in the stratosphere, thus emission of gamma rays and neutrons from the fission reaction would not be any different then the radiation already impinging on our atmosphere from cosmic and solar radiation.
“…the best way to banish fear is for citizens to profit from the program.”
There is also the potential for the U.S. and its citizens to profit from this venture. Dewar suggests a governance framework for creating a public/private corporation in which the private sector is in charge, but leases assets from NASA and DOE. The government would support the venture via isolated testing sites, providing technical advice, supplying the uranium fuel and security to guard against potential nuclear proliferation. The public/private partnership would be set up to incentivize citizen participation through stock purchases and distribution of dividends in addition to providing jobs and funding the missions.
“Another source of funding would exist beyond the government or private billionaires: the public now has access”
Dewar concludes his paper with an inspirational statement: “…a new space program emerges based on science, not emotion, one that maximizes the technology for terrestrial applications, one that neuters the rocket equations and democratizes the space program, allowing citizens to participate and profit, and one that ever integrates Earth into the Solar System.”
In a MDPI Journal Life paper, Alexandra Proshchina and a team* of Russian researchers summarize the research that has been performed thus far on reproduction of invertebrates in space. As mentioned in the article, the only data we have on mammalian reproduction in microgravity since the dawn of the space age is from two experiments carried out over 26 years ago. The studies looked at pregnant rats launched aboard the Space Shuttle on missions STS-66 and STS-70 in 1994 and 1995 respectively, and there have never been any births of mammals in space. This huge knowledge gap on reproduction in space is problematic for human space settlement. Yet Elon Musk, The Mars Society, and other groups are charging ahead with plans for cities on Mars. What if we discover that humans cannot have healthy babies in 0.38g? SSP has covered the quest for determining the gravity prescription before looking at JAXA’s effort to at least start experimenting with artificial gravity in space, albeit on adult mammals (mice). We are still waiting for JAXA’s published results of 1/6g experiments carried out in 2019.
The data from the Space Shuttle program only looked at part of the gestation period (after 9 days) and only in microgravity. The results did not bode well for reproduction in space. Some findings “…clearly indicate that microgravity, and possibly other nonspecific effects of spaceflight, can alter the normal development of the brain itself.”
So we have this one piece of data for reproduction in microgravity and nothing in higher gravitational fields except what we know here on Earth in 1g.
Would partial gravity like on the Moon or Mars be sufficient for normal fetal development in rats (or mammals in general, especially humans) during the full gestation period? If problems are identified could it be extrapolated to human reproduction? The fact that homo sapiens and their ancestors evolved on Earth in 1g for hundreds of thousands of years is a big red flag for future space colonists that hope to settle on the surface of planetary bodies and have children.
We don’t know how lower gravity conditions could affect embryonic cell growth. How would the changes in surface tension and embryo cell adhesion be altered in these environments? We have very little data on cellular mechanisms and embryonic alterations that lower gravity may induce that could affect fetal development.
“There are also many other questions to be answered about vertebrate development under space flight conditions.”
A recent report on giving birth in space by SpaceTech Analytics looks at many of the factors that need to be considered for human reproduction off Earth. Most problems could be potentially mitigated through engineering solutions such as radiation protection, medical innovations tailored for space use, life support technology, etc. In this entire presentation the authors gave very little consideration to partial gravity affects on human embryos and child birth. One slide (number 70) out of 85 discusses these issues.
It is clear that more and longer term experiments will be necessary to determine how partial gravity affects the reproduction and development of mammals before humans settle space. Some researchers are actually considering genetic modification to allow healthy reproduction in space, and the ethical considerations associated with this course of action. Obviously, such a drastic methods would come only if there was no other alternative. One would think that building O’Neill type habitats rotating to produce 1g of artificial gravity would be preferable to such extreme measures.
Clearly, we need a space based artificial gravity laboratory to carry out ethical clinical studies on the gravity prescription for human reproduction, starting with rodents and other lower organisms. SSP recently covered a kilometer long version of such a facility that could be deployed in a single Falcon Heavy launch. And don’t forget Joe Carroll’s proposal for a LEO partial gravity test facility. Doesn’t it make sense to invest in such a facility and do the proper research before (or at least in parallel to) detailed engineering studies of colonies on the Moon or Mars intended for long term settlement? This research could inform decision making on where we will eventually establish permanent space settlements: on the surface of smaller worlds or in free space settlements envisioned by Gerard K. O’Neill. Elon Musk may want to consider such a facility before he gets too far down the road to establishing cities on Mars.
* Authors of Reproduction and the Early Development of Vertebrates in Space: Problems, Results, Opportunities: Alexandra Proshchina, Victoria Gulimova, Anastasia Kharlamova, Yuliya Krivova, Nadezhda Besova, Rustam Berdiev and Sergey Saveliev.
At the 24th Annual International Mars Society Convention held October 14 – 17, Dr. Charles Cockell, professor of Astrobiology in the School of Physics and Astronomy at the University of Edinburgh, gave a talk on what he calls Freedom Engineering. His viewpoint was also published in a paper via the journal Space Policy in August of 2019. Cockell makes the case that due to the extreme constraints imposed by the laws of physics on living conditions in space settlements, freedom of movement will necessarily be restricted. Such conditions could be exploited by tyrannical governments to limit social, political and economic freedoms as well. To address these concerns Cockell suggests that colony designers utilize proactive engineering measures in planning off Earth communities to maximize liberty in the space environment. For example, rather then one centralized oxygen production facility or method that may be leveraged by a despot to control the population, it is suggested that settlements be designed with multiple facilities distributed widely and if possible, other types of oxygen production (e.g. greenhouses) be employed to minimize the chance of monopolization.
This engineering philosophy raised many questions among colleagues of mine so I reached out to Dr. Cockell for an interview via email to provide answers. He graciously agreed and I’m very grateful for his responses.
SSP: How is Freedom Engineering different from standard engineering practices of designing for redundancy to prevent single point failure?
CC: There is a strong overlap. For example, if you want redundancy, you multiply oxygen production. That would also be a desired objective to minimize the chances of monopolistic control over oxygen. So often the objectives are the same. However, I suggest that freedom engineering is a specific focus on engineering solutions that cannot be used to create coercive extraterrestrial regimes, which is not always the same as redundancy. For example, we might minimize the use of cameras and audio devices to monitor habitats for structural integrity, an objective consistent with general engineering demands, but potentially antithetical to human freedoms.
SSP: Since the added costs are significant and we may not be able to follow these practices initially, how do we get around the problems you mention after being on the Moon a decade or two? Wouldn’t the forces of tyranny have already won?
CC: Liberty is never cheap in resources and human effort. You can take a cost-cutting approach and hope that tyrannical regimes don’t take hold in a settlement or you can plan before hand to minimize their success, even if that involves more cost. However, as many freedom engineering solutions are compatible with redundancy, it is not necessarily the case that introducing measures like maximizing oxygen production and spacesuit manufacture motivated by considerations on liberty would add significantly to a cost already incurred by ensuring redundancy.
Liberty is never cheap in resources and human effort.
SSP: How do we avoid centralized control of transportation? Will we have two or more landing pads, several sets of rockets? – e.g., Musk, Bezos, and ULA?
CC: I would say that maximizing the number of entities with transportation capabilities is a good idea. Here too, we would want to achieve this for redundancy, but it would also reduce the chances of monopolization and the isolation of a settlement (particularly if leaving the settlement can only be achieved with one provider). This could also include multiplying the physical number of rocket launch and arrival points.
SSP: There are always non-redundant systems, which you acknowledge. At some level there are critical infrastructures that cannot be made redundant because then we get into an infinite loop. If a tyrannical power wanted to control everything on the Moon, for example, that is where they would focus their control. Can you comment?
CC: That’s true. It goes without saying that, as on Earth, a determined despot with enough support can find ways to take over a society. However, as the framers of the US Constitution understood, if you can introduce enough checks and balances you can make tyranny an outcome that requires many of those to fail. You reduce the risk. So by minimizing the number of single point controls in an extraterrestrial society you never eliminate the chances of tyranny, but you reduce the number of options open to those with tyrannical tendencies.
It goes without saying that, as on Earth, a determined despot with enough support can find ways to take over a society.
SSP: How would a tyrannical off-Earth settlement get its citizens when moving to such a settlement would seem like a terrible idea?
CC: It’s true that an overtly tyrannical settlement may eventually find it difficult to recruit people and might therefore fail. One might hope that this would be a feedback loop that would discourage tyranny in space. However, when building free government[s], it’s a good idea to assume the worse to achieve the best, i.e. assume that people will attempt to, and can, create a tyranny, and then build a system that minimizes this possibility. It’s also worth pointing out that once people are in a settlement, they will be physically isolated under some governance power. Just as it isn’t trivial to remove a tyranny on Earth that has a population corralled under it once it is established, it may not be easy to free a settlement once it has a population under its control. It is worthwhile to attempt to design societies that avoid this possibility from the beginning.
SSP: Would a space settlement economy with multiple competing companies providing essential needs such as life support, obviate the requirement for engineering redundancy since it would be more difficult for a tyrannical government to take over all the means of production?
CC: Yes, I think in many ways multiple competing companies is a form of redundancy – providing many conduits for production and minimizing single points of control or failure. Maximizing productive capacity is essential. I would mandate some basic level of oxygen production capability, for example, that any settlement must be capable of producing to keep people alive, and then try and stimulate a private market in fashionable oxygen machines of various kinds, different oxygen production methods etc. Of course, one should not be utopian. A coercive monopoly could still control a lot of this, but in general the more entities that produce vital resources, the more likely real choice can emerge in some form.
SSP: One reasonable measure that can be taken that doesn’t fall under normal engineering approaches is standardizing data transparency. It might make sense that it should be a matter of public record, and easily assessable, the records of who does what with vital resources and how activities that seriously impact human safety are managed. This can be done without compromising anyone’s intellectual property. The full light of day can be good protection especially when used proactively, and establishing such standards would head off the opportunity to wave things away as bias or smear campaigns. Open-source approaches to data are already a big thing for all the space agencies and may be the best course of action. Do you have an opinion on this philosophy?
CC: I think this is essential. The freedom engineering approach I suggest is just one mechanism for reducing coercive governance, but a free society is constructed from many other needs. In some of my previous papers I have discussed exactly this – the need for transparency in information about oxygen production, who is funding it, and how etc. A general culture of openness is necessary. There may be some novel approaches such electing members of the settlement by lot to take part in meetings to do with oxygen or water production, for instance, and write public reports. Corporations will find all this very annoying of course, but the wider culture of liberty will be enhanced by a very ‘leaky’ society with respect to information. Other essential things are a free press (even if that is just informal lunar or Martian newspapers), transparency in elections for running the settlement, and perhaps maximum terms on people involved in health and safety tasks to create fluidity in the network of officialdom that oversees the potentially large number of health and safety concerns with respect to radiation, dust, production of essential items.
Corporations will find all this very annoying of course, but the wider culture of liberty will be enhanced by a very ‘leaky’ society with respect to information.
Dr. Thomas Matula, Professor at Sul Ross State University Uvalde, Texas, has developed an economically based strategy for space settlement. His plan addresses the deficiencies in many proposed visions of human expansion beyond earth, namely the missing economic and legal aspects needed for sustainable settlement of the solar system. Matula discussed his approach with David Livingston on The Space Show September 14 and in a paper entitled An Economic Based Strategy for Human Expansion into the Solar System attached to the show blog.
Astrosettlement Development Strategy (ADS) can be boiled down into a four step economically based roadmap for space settlement which could be started with minimal private funding. Each step would achieve economic success before moving on to the next level. The four levels are Earth based research, industrialization of the Moon, developing and settling the solar system and interstellar migration.
In the first step of Earth based research, Matula suggests developing a subscription based online role playing computer game with the purpose of creating a virtual simulation of a space settlement to model the social and economic aspects of communities beyond Earth. SSP has been following similar efforts already underway by Moonwards. Further research in this phase would look into space agriculture to understand the types of plants and dietary needs of space settlers and improving the efficiency of crop growth paving the way for self sustaining habitats. Matula has penned a different paper along these lines called The Role of Space Habitat Research in Providing Solutions to the Multiple Environmental Crises on Earth, also attached to the Space Show Blog, which could have duel use applications in addressing environmental problems on our home planet. There are already efforts underway in this arena with Controlled Environment Agriculture (CEA) utilizing greenhouse automation through the Internet of Things leading to reduction of water needs and an increase in crop yields.
“Developing the technology to green the Solar System will also green the Earth for future generations”
Next on the roadmap is lunar industrialization. The focus of this step is to use robotics and in situ resource utilization to minimize the mass of materials lifted from Earth and to create lunar manufacturing capability in a cislunar economy that can be leveraged to build space based habitats for expansion into deep space.
Developing the solar system comes next. Once an economic foundation of industrialization of the Moon has been established, large mobile habitats can be built at the Earth-Moon Lagrange points L1 and L2. Called HALE, for Habitat Autonomous Locomotive Expandable, these are 1km wide self sustaining habitats with 1G artificial gravity capable of low energy transit throughout the solar system including out to the Kuiper Belt, where they can use the resources there to add to their size or build copies of themselves.
The final phase combines mobile free space settlement with advanced propulsion to develop the capability of expansion into the Oort cloud and on to the stars.
“…propulsion technology could advance to a point that would allow mobile space habitats designed for the Oort Cloud to be transformed into the first generational starships.”
Y.K. Bae Corp is on the verge of testing a revolutionary photonic laser thruster (PLT) that could be a game changer for in space propulsion and interplanetary travel. Founder and Chief Scientist Young K. Bae Ph.D described the technology in a recent Future In-Space Operations (FISO) Telecon presentation. The secret is generating thrust through photon pressure of a recycled laser beam enabling high energy to thrust efficiency without onboard propellant. Y.K. Bae Corp’s Continuous-Operation laser thruster or PLT-C is capable of delivering continuous thrust for long periods of time (e.g. days – years). The crew/payload section of the craft contains no power supplies, fuel or rocket engines. A power source is needed at the destination to generate a velocity reversal and stopping beam.
Dr. Bae believes an in-space “photonic railway” using this technology could open the solar system to commercialization and laid out a timeline for development of the photonic laser thruster. He believes that a 1 Newton (N) thrust PLT demonstration on the ISS could be accomplished within 3 years, a 50-N thrust PLT suborbital lunar launch is possible within 10 years, transits to the Moon can be done within 20 years and trips to Mars/Asteroids are projected to be in the 30 – 40 year timeframe.
When scaled up, super high ∆v can be achieved using the PLT. With a total electric laser power of 1000MW, travel times from the Earth to Mars could be achieved in less then 20 days for a 1-ton ship with 50% payload. From Mars out to Jupiter, a trip would take about 45 days for a craft with the same mass. The PLT spacecraft could be the main mode of rapid in-space transportation for humans and high price or lighter commodities after conventional thrusters (e.g. chemical rockets) establish the initial infrastructure and continue as the transportation choice for low cost or heavier payloads.
Y.K. Bae Corp has demonstrated the photonic laser thruster technology in the lab. Check out their cubesat demo video.
The SHEPHERD concept for gentle asteroid retrieval with a gas-filled enclosure, an SSP favorite open source technology, has been covered in a previous post. Dr. Bruce Damer, one of the coinventors of the system, recently appeared on SpaceWatch.Global’s Space Café podcast where he revisited this promising technology for capturing asteroids, mobilizing them and extracting key materials to support space settlement (which can be found near the end of the recording). SHEPHERD could solve the three main sourcing problems of sustainable spaceflight and habitation: harvesting volatiles, building materials, and sources of food. Dr. Damer has also been busy with his (and UCSC Prof. David Deamer’s) Hot Spring Hypothesis, a testable theory regarding the place and mechanism of the life’s origins on the Earth, which was the main focus of the podcast. In fact, the arc of his career has tied these two endeavors together in interesting ways. SSP reached out to Dr. Damer for an exclusive interview via email on these groundbreaking topics.
SSP: Dr. Damer, thank you so much for taking the time to answer my questions about SHEPHERD. I’ve been excited and intrigued with the technology ever since I saw the initial paper and your 2015 TEDx talk. Can you give our readers an overview of the concept?
Damer: The goal for SHEPHERD is to provide a universal technology to open the solar system to sustainable spaceflight and beyond that, to large scale human colonization (see figures and explanations for Fuel, Miner and Bio variants below). Enclosing an asteroid (or Near-Earth Object-NEO) within a fabric membrane and introducing a controlling gas would turn that asteroid into a “small world”. The temperature of the gas, its chemical composition and gas pressure forces set up within it can enable multiple in-situ resource utilization (ISRU) scenarios. Initially, the extraction of water and other volatiles from icy NEOs could provide fueling stations with deliveries throughout the solar system. Next, the use of the Mond-process carbonyl gas extraction from high-metallic NEOs can provide electroform 3D printing of large parts in space for construction of habitats. Lastly, melting the ice content of a NEO to a liquid phase surrounding its rocky core enables the introduction of microbes, algae and even some aquatic animals into a biosphere, a mini-Earth terrarium sustained in space. This one invention could provide many of the elements necessary for sustainable spaceflight but also for the construction and support of in-space and surface-located planetary and lunar habitats for thousands or millions of inhabitants. Co-inventor of the design, Dr. Peter Jenniskens at the SETI Institute, calls this the “sailing ship for space” harkening back to how his Dutch ancestors helped open the Earth to commerce centuries ago.
SSP: Have there been any developments or updates to the concept since the initial TEDx talk and NewSpace Journal paper which both came out in 2015?
Damer: Back then we thought that no company or government had the will or capability to invest in such an opportunity, but this is now changing. The roaring success of NewSpace ventures such as SpaceX and their dual award of NASA’s Artemis Program returning humans to the moon based on reusable crewed launches and their recent successful low altitude testing rounds for Starship, has totally changed the space landscape of the near future. Jeff Bezos’ vision for megastructures in space based on the O’Neill colonies of the 1970s would require substantial asteroid resourcing. Elon Musk’s vision for large surface colonies on Mars would be equally well supported by simple, automated space based ISRU which overcomes substantial mining and manufacturing hazards attempting to process bulk materials on the surface of Mars or the moon. In addition, Bigelow’s success with inflatables, China’s surging space program with a new crewed station and rovers on the moon and Mars, all point to much more traffic and demand, especially for fueling depots, as early as the mid-2030s. Reducing the cost of lifting heavy and bulky materials from Earth may never be competitive to extraction, electroforming and farming in space with low-cost delivery directly to points of demand.
Earlier this year I determined that the time was right to place our invention out into the field again and seek partners to join in a development roadmap that will provide a solid financial and technical ladder for SHEPHERD’s maturation.
At a NASA/SETI meeting in January 2019 I was discussing SHEPHERD with members of the Luxembourg Space Agency and was overheard by space entrepreneur Carlos Calva. He approached me and offered that he would work with me to make SHEPHERD into a business. Subsequent meetings at SETI with my co-designer Peter Jenniskens (Julian Nott had died tragically in a ballooning accident) gave us early insights into SHEPHERD’s developmental timeline.
In that spring of 2019 Carlos and I engaged in a rapid-fire series of meetings developing a short-term cash business model for SHEPHERD which would provide a financial lever for the technology. Capturing, moving, and extracting resources from asteroids is a longer-term (15+ years) play, with no immediately apparent buyer for the first potential products: volatiles for propulsive fuel, air, water, and other crew consumables. Elon Musk and SpaceX might reach a point in this decade when they would buy a futures contract for hundreds, or thousands of tons of water and fuel delivered into Earth and Mars orbits sometime in the 2030s. Jeff Bezos may also want to finance the development of SHEPHERD as a technology for delivery of resources to build space habitats much as he has with Amazon’s funding of drone and other robotic fulfillment innovations.
But how to prove SHEPHERD as a technology and then sustain it as a business for long enough to be ready for either of these clients? We settled on two emerging market opportunities: 1) satellite servicing and decommissioning, and 2) hazardous debris removal and deorbiting. Both are potential cash businesses that could provide us achievable milestones to support the multiple investment rounds required. Satellite servicing and debris removal or de-risking is an urgent unmet market need for both governments and commercial operators worldwide. Along with the CubeSat revolution, SpaceX’s reusable launch platform and Bigelow Aerospace’s success with the inflatable Genesis and BEAM module on the ISS, many core technologies were maturing.
Making SHEPHERD into a viable sailing ship for space will not be without its challenges. Designing and flying a fabric enclosure which can open, admit an object (a satellite, a chunk of debris, or a space rock) and then closing it tight, sealing it well enough to fill it with a controlling gas was a major technical challenge which NASA identified in their review of our 2014 Broad Agency Announcement proposal for the asteroid redirect program (since cancelled). The tried-and-true way to make a new space system work reliably is to build scale models, test them to failure, and test them again.
SSP: You mentioned that some of the capabilities of the system could be tested in LEO with CubeSats. Since the technology is open source, has anyone reached out to you to develop hardware for such an experiment? What would be tested and how?
Damer: Carlos and I made a bee-line for the world-renowned annual CubeSat Developer Conference meeting at Cal State San Luis Obispo in April of 2019 where we were able to interact with many of the leading thinkers and solution providers in the CubeSat industry. We devised a back-of-an-envelope LEO test vehicle flight series and made some key contacts. For a small investment (2-4 million USD), an effective six test flight series with a 4U CubeSat would first deploy a gas filled bag into which we could release a target object (such as a real meteorite which would be returned to space). The images below depict this scenario. Later flights in the series could have the target released to space and then the CubeSat would match orbits, track, enclose and seal the object into the enclosure. Key for any test is the ability to manage the object within the enclosure such that it does not contact the fabric. This would not be an issue for our small CubeSat, but it would be a potentially catastrophic encounter for a satellite or NEO. The key to safety (SHEPHERD stands for Secure Handling through Enclosure of Planetesimals Headed for Earth-Moon Retrograde Delivery) is that the system is touchless. In the image below we see gas jets firing to move the object toward and hold it in the center of the enclosure.
All of this early effort to build and fly the CubeSat missions would mature our IP including: tracking, gas fluid dynamics for handling and enclosure deployment and sealing. We could then value the company and seek a round of investment from governmental or commercial partners in the satellite servicing and debris removal markets.
SSP: How do you foresee these two potential near term commercial applications generating sufficient revenue to “pay the way” for SHEPHERD to achieve its long-term goals?
Damer: Paying the way for SHEPHERD could come from a mixture of satellite servicing (expensive “big birds” for the US DOD or communication satellite operators), orbit graveyarding (for GEO, or de-orbiting from LEO), and of course mitigation of dangerous space debris to head off Humanity’s disastrous encounter with the “Kessler syndrome” as depicted in the movie Gravity. In-space satellite servicing via robotic spacecraft is problematic, requiring very high-risk grappling procedures between vehicles which have no built-in standard grappling mechanism. SHEPHERD provides a gas-based “pneumatic” way to safely envelop and control spacecraft without hard contact. Early computational studies at the SETI institute in 2014 established that a shape model of multi-ton asteroid 2008 TC3 could be de-tumbled and de-spun in less than 24 hours if the object was interacting within a gas at 10% Earth atmosphere pressure. The friction of the satellite or chunk of debris with the gas will bring it to a standstill, then gas jets can be used to rotate and position the enclosed spacecraft for servicing. Imparting a continuous driving force onto the craft using these same jets can create sufficient delta-V to change its orbit. Such safe handling and mobilization of objects in space is key to a whole range of future space operations. The irregularity of satellite shapes (including long booms or antennae) presents fewer challenges to SHEPHERD’s scale and size-independent gas handling system than they would to a robotic or crewed “jet pack” style EVA servicing as we saw with the Space Shuttle’s Hubble servicing missions.
If a satellite servicing, extension of life, or safe decommissioning capability were clearly on the horizon, supporters of international treaties and reinsurance companies could create guaranties, service contracts and insurance instruments which would finance a first generation of SHEPHERD vehicles.
SSP: What do you see as the full vision for the sustainable space architecture which SHEPHERD could enable?
Damer: The image above depicts the enabling of SHEPHERD-derived spacecraft and processing facilities to support both near Earth space stations and larger megastructure colonies, robotic and human exploration of the inner solar system and beyond. I envision the SHEPHERD business being most akin to the mining industry I was raised around in British Columbia and as depicted in the Sci Fi series The Expanse. Some companies would fly prospecting (and orbit determination) missions to NEO targets, file claims and then sell them on to development companies. Those companies would license or build SHEPHERD-class spacecraft financed through contracts for future deliveries of commodities to companies and governments. Buyers would eventually acquire the risk-taking development companies and leverage them to support much larger projects such as space settlement megastructures or to supply Mars surface colony operations. Over time, scaling of the SHEPHERD system enclosure sizes would permit the safe handling and redirection of Earth-threatening asteroids giving us all a planetary protection shield. A great deal of Astrobiology science could also be supported such as the delivery of a pristine carbonaceous asteroid to Lunar orbit (see below) for astronaut geologists to sample. These samples might give us clues as to how life began on the Earth through the delivery of abundant organics from asteroids like this.
SSP: What are the next steps for SHEPHERD?
Damer: The COVID-19 pandemic caused a pause on SHEPHERD’s development both as an engineering concept and a business. When I was invited to appear on the Space Café podcast in April (of 2021), I decided to bring it up again to gauge public interest and bring it to leaders in New Space. This interview with you is the next step in developing that interest, calling forward a development team. What I am also seeking is critical input from the community on the concept, leadership in research, and the formation of a company or university research program with financial support for the early on-ground computational and test-article studies leading up to CubeSat flights.
I specifically “open sourced” the basic concept of SHEPHERD on behalf of the three co-inventors in my 2015 TEDx talk, but IP developed by one or more implementers of this core concept can provide them and their investors with protectable value. The seal closure will be one key patentable innovation. Together with a team of keen and willing supporters including myself and Carlos, we produced a pitch deck which was first premiered at the Space Resources Roundtable held at the Colorado School of Mines in May of 2019. This deck concisely lays out the initial cash business in satellite servicing and debris removal and the engineering we have done around the CubeSat and larger variants. Carlos is back at work on the key steps of recruiting engineering leadership and funding for the ground-based development. I am open to inquiries from qualified contacts who wish to discuss their involvement seriously.
SSP: As you described above, of the three key applications of SHEPHERD, one could be food production for space settlements by creating a fully self-contained biosphere out of an asteroid, a mini-Earth if you will. This complements your Hot Springs Hypothesis for life’s beginnings in its method for seeding space with life beyond Earth. Is there an underlying principle linking the origin of life and humanity’s role in extending it beyond the cradle of the Earth?
Damer: Thank you for asking this question! A couple of years ago I literally sat bolt upright in bed having had a dream of a future vision of the solar system, possibly from the year 2100. A ring of asteroids had become enclosed with SHEPHERD craft or some derivative thereof, and thousands to millions of “new worlds” were orbiting the sun. In nearby orbits were the sharply geometric and tubular shapes of space settlements under construction, housing billions of humans and the organisms with which they cohabitate. Evolution had a future path, moving off our birth world by first creating many new ones. Like the first living cells, the Earth had undergone a spectacular mitosis! I realized in a flash that this future solar system was a huge scale evolution of the ancient hot spring pool cycling with membrane-enclosed protocells which Dave Deamer and I have proposed for life’s beginning. The principal of membranous encapsulation enabling chemical activity and resource sharing acted out four billion years ago in hot spring pools would return to enable life to emerge from the womb of the Earth into a long evolutionary future in the cosmos. It was truly gratifying. You can see how I then wove together these stunning parallel visions in my two TEDx talks below.
Fully closed environmental control life support systems for long term human space missions are difficult to achieve. But its possible to get closer using a novel approach proposed by Thomas Lagarde in a paper presented at the 69th International Astronautical Congress in Bremen, Germany which took place in October 2018. Using a combination of rotating greenhouses and worm composting units, the system would significantly reduce resupply while producing air and food with equipment that accelerates plant growth while efficiently recycling waste.
Lagarde starts with the inputs and outputs of a crew of six and determines what the surface area required for greenhouses to produce nutritious crops for sustenance and life support. He assumes that inflatable modules like Bigelow Aerospace’s B330 design could be a starting point for the enclosures and then extends the concept to a torus combining the advantages of a solid shell module with that of an inflatable. The greenhouses utilize a rotating garden concept called an “omega garden unit” (OGU) based on an Omega Garden, Inc’s rotary hydroponics system which maximizes crop yield while minimizing space requirements. Growing plants under these conditions, i.e. with artificial gravity, has been shown to activate plant hormones called auxin, thereby increasing their growth rate. The use of an organic light-emitting diode source at the axis of the centrifuge provides a commercially available solution for optimal light exposure while saving space, energy and generating less heat.
To make significant progress toward closure of the life support system recycling loop, human waste and non-edible plant parts become worm food in composting units. This natural process can be accelerated under the right conditions, achieving exponential growth of the worm population but can be self-regulated as described in detail in the paper.
Lagarde sums up the research by saying: “After studying all the different aspects of plant growth and composting, we can conclude that the combination of a rotating garden and processing of organic products by worms will provide enough food and fresh air for a crew of 6 in a minimal space.”
The technology of self replicating machines has been gradually progressing toward maturity over the last few decades. The Space Studies Institute recognized this key enabler of space settlement as far back as the 1980s and covered the topic frequently in its newsletter updates. Now Michel Lamontagne has provided a status update in the latest issue of Principium. On page 50, he highlights the history of self replicating factories, provides a vision for the evolution of the concept for production of space settlement infrastructure and gives a summary of recent developments in key areas of research such as additive manufacturing, machine learning and cheap access to space that will be enablers of this space based industry.
The first factory will be built on the Moon after deep learning simulations prove the concept on Earth. Eventually the more autonomous versions would migrate to Mars and then to what may be the best suited location, the asteroid belt which “…may be the ultimate resource for space settlement construction.” Lamontagne believes “These factories would then follow humanity to the Stars, after having helped to build the infrastructure required for the occupation of the solar system and for Interstellar travel.”
If humanity is to ever move off Earth, clearly we will need to be able to have children wherever we establish long term settlements. But, as humans have evolved over millions of years in Earth’s gravitational field, normal gestation may not be possible on the Moon or Mars. This is probably the most important physiological question to be answered before outposts are permanently occupied on these worlds. We can shield people from radiation, we can recycle wastes and use ISRU to replenish consumables for life support. But we may find that artificial gravity either in free space rotating habitats or on planetary surface settlements is required for settlers to have healthy children. In fact, when I asked Dr. Shawna Pandya, a physician and expert in space medicine about it on The Space Show, she said “…that is the million dollar question”.
Numerous studies have shown the deleterious effects of long term microgravity on human health. So we know that humans will need some level of gravity for sustainable occupation. But what level is enough to stave off the effects of lower gravity on human health and what about reproduction under these conditions? Plus, there is the problem of how to run ethical clinical studies to answer these questions? The Japan Aerospace Exploration Agency (JAXA) has started research in this area by studying mice under variable gravity conditions aboard their Kibo module on the International Space Station using a Multiple Artificial-gravity Research System (MARS). Results of this first ever long term space based mouse habitation study with artificial gravity were published in a paper called Development of new experimental platform ‘MARS’—Multiple Artificial-gravity Research System—to elucidate the impacts of micro/partial gravity on mice in Nature back in 2017. The authors* of the paper found that significant decreases in bone density and muscle mass of the mice reared under microgravity conditions were evident when compared to a cohort raised under 1G indicating that artificial gravity simulating the surface of the Earth may prevent negative health effects of microgravity in space. The next obvious step was to test the mice in 1/6 G simulating conditions on the Moon. This experiment was ran in 2019 but the results have not yet been published. SSP has reached out to JAXA with an inquiry on when we can expect a report. This post will be amended with an update if and when an answer is received.
Reproduction of mice or other mammals has not been studied in space under variable gravity conditions. The problem screams out for a dedicated space based artificial gravity facility such as the Space Studies Institute’s G-Lab and others (e.g. Joe Carroll’s Partial Gravity Test Facility ). Even if such a laboratory existed, how would ethical clinical studies on higher mammal animal models to simulate human physiology during pregnancy be carried out? Answering this question will come first before the million dollar one.
June 2, 2023 Update: JAXA finally released the results of their 2019 study on mice subjected to 1/6 G partial gravity in a paper in Nature in April. There is good news and not-so-good news. The good news is that 1/6 G partial gravity prevents muscle atrophy in mice. The downside is that this level of artificial gravity cannot prevent changes in muscle fiber (myofiber) and gene modification induced by microgravity. There appears to be a threshold between 1/6G and Earth-normal gravity, yet to be determined, for skeletal muscle adaptation.
______________________________
* Authors of Development of new experimental platform ‘MARS’—Multiple Artificial-gravity Research System—to elucidate the impacts of micro/partial gravity on mice: Dai Shiba, Hiroyasu Mizuno, Akane Yumoto, Michihiko Shimomura, Hiroe Kobayashi, Hironobu Morita1, Miki Shimbo, Michito Hamada, Takashi Kudo, Masahiro Shinohara, Hiroshi Asahara, Masaki Shirakawa and Satoru Takahash
Lynn Rothschild, a scientist at NASA’s Ames Research Center in California, has just been awarded a NASA Innovative Advanced Concept (NIAC) Phase 2 grant to continue her synthetic biology studies using mycelium, the branching, thread-like structures of fungi, to “grow” space structures such as habitats, furniture and more. Rothchild previously advised a team working on mycelium production, or what she calls Myco-architecture, for habitats on the Moon and Mars. The project took place at NASA Ames as part of the iGEM Competition in the summer of 2018, and was funded by a NIAC Phase 1 award. Called Stanford-Brown-RISD or Myco for Mars as the they called themselves, the team was composed of students from Stanford University and the duel degree program of Brown University and the Rhode Island School of Design.
This new phase of the research will continue development of mycelia production, fabrication, and testing techniques. Rothschild describes the process on the NASA Myco-architecture Project site: “On Earth, a flexible plastic shell produced to the final habitat dimensions would be seeded with mycelia and dried feedstock and the outside sterilized. At destination, the shell could be configured to its final inner dimensions with struts. The mycelial and feedstock material would be moistened with Martian or terrestrial water depending on mass trade-offs, and heated, initiating fungal (and living feedstock) growth. Mycelial growth will cease when feedstock is consumed, heat withdrawn or the mycelia heat-killed. If additions or repairs to the structures are needed, water, heat and feedstock can be added to reactivate growth of the dormant fungi.”