The thorium molten salt reactor for Earth and space applications

Schematic of the Thorium Molten Salt Reactor for space propulsion applications. Credits: Ajay Kothari / The Space Review

President Joe Biden recently signed into law a sweeping climate bill that will have very little (if any) impact on addressing global warming (a reduction of 0.028 degrees F by 2100). While there are tax credits in the bill for construction of new nuclear power plants over the next 10 years, only two are planned to add to the existing 93 facilities operating today which provide 18% of the U.S. energy production. Most of the funding in the bill is targeted at tax credits for EVs and incentives for renewable sources such and wind and solar which are subject to interruption. Nuclear energy holds enormous promise to offset the carbon emissions associated with fossil fuel energy production and can provide reliable base load power, but it is still plagued by negative public perceptions related to safety and the potential for weapons proliferation.

Is it time to reimagine our approach to sourcing clean energy in general, and nuclear power in particular while at the same time addressing climate change? Ajay Kothari thinks so – by research and development and eventual commercialization of nuclear power plants fueled by thorium rather than uranium. Dr. Kothari describes his vision in the August 1, 2022 issue of The Space Review. He believes that this powerful and sustainable power source “…will solve the world’s energy problem a thousand times over with zero carbon dioxide emission during operation, and it may be the cheapest form of energy production for us.”

“One ton of thorium is roughly equivalent to five million barrels of oil”

Thorium is abundant in the Earths crust making it relatively cheap and therefore, more affordable. It is only slightly radioactive, far less so then uranium and does not contain fissile material making it much safer and easier to moderate (i.e. switch off) in the case of an accident. This would prevent meltdowns unlike conventional reactors which have coolants that operate at much higher pressures and need far more complicated engineering safeguards to prevent disasters.

Thorium molten salt reactors are inherently safe. Flibe Energy is designing a Liquid Fluoride Thorium Reactor (LFTR) and according to the company’s website, “…any increase in operating temperature reduces the density of the salt which in turn, causes the reaction to slow and the temperature to fall. LFTR is also designed with a simple frozen salt plug in the bottom of the reactor core vessel. In the event of power loss to the reactor, the frozen salt plug quickly melts and the fuel salt drains down into a storage tank below – causing a termination in the fission process.”

Once developed for energy production on Earth, the same technology has applications in space. While it would not be used in a booster during launch, a molten salt thorium reactor upper stage, like that shown in the illustration above, could provide an efficient 700 second specific impulse by heating hydrogen as fuel for advanced propulsion for the next few decades until fusion energy comes on line. An added benefit would be that the upper stage reactor could also be used to provide energy at the destination, for example on the Moon or Mars.

“One kilogram of thorium taken from Earth [to the Moon] … can support a 2.6 thermal megawatt plant for a year.”

A thorium reactor was developed at Oak Ridge National Laboratory (ORNL) back in the 1960s but was never commercialized after the then Atomic Energy Commission favored plutonium fast-breeder reactors.

Diagram of the thorium fuel cycle in molten salt reactors. Credits: Flibe Energy

There are challenges to overcome. For example, the thorium fuel cycle is complicated and still produces some radioactive waste, but far less and with much shorter half life when compared to conventional uranium nuclear reactors. But the benefits of this clean, abundant and affordable energy source could make investment by the public and private sector worth the effort.

“With US reserves at 595,000 tons of thorium, we have enough to last us 600 years at current rates.”

Kothari has been a long time proponent of Thorium reactors. He recently gave a talk on the molten salt thorium reactor via Zoom for the University of Maryland now available on YouTube. You can also hear an in-depth discussion of the technology on The Space Show when he was a guest back in October 2021 and when he returns to the show September 13, 2022.

Dr. Kothari agreed to take a deeper dive with SSP into what he calls “Thor – The Life-Saver” through an email interview. If you have questions I didn’t cover about thorium molten salt reactors please leave a comment.

SSP: Dr. Kothari, thank you for taking the time to answer my questions. With respect to the public’s fear of nuclear power in general, the safety of thorium molten salt reactors is certainly an argument in favor to the technology. But aren’t there still risks of nuclear proliferation?

AK: We have more than 400 reactors in more than 40 countries worldwide. We found ways to have countries develop their reactors but have proliferation controls. This idea, the TMSR, creates no Plutonium, and would be easier to monitor. Besides, whether we want [to] or not, other countries WILL do it. Many are. Also we can develop the technology for ourselves and [for] friendly countries OR at the very least, USE IT FOR OURSELVES! How can we deny this incredible opportunity for our (US) populace? Is that fair?

SSP: Flibe Energy appears to be the only U.S. company pursuing LFTR technology. Chicago based Clean Core is focusing on thorium-based fuels to be used in existing pressurized heavy-water reactor designs. What do you think of these two company’s approaches and are you aware of any other thorium reactor development efforts in the U.S, either in private industry or academia?

AK: MIT is developing tech to resolve some of the TMSR issues that would be quite helpful [SSP found this story from MIT Nuclear Reactor Laboratory on deployment of its “…nuclear reactor (MITR) and related testing apparatus as a proving ground for the materials and processes critical to molten-salt-cooled reactors.”]. Others are shown in the chart below with some of them being US based (bottom right).

Color coded map showing global molten salt reactor technology development activities and the sponsoring country/entities. FHR= Fluoride salt-cooled high-temperature reactor. LEU = Low Enriched Uranium. HEU= Highly Enriched Uranium. TRU=Transuranic wastes, i.e. heavier elements than Uranium. Credits: Oak Ridge National Laboratory

SSP: How difficult would it be to adapt this technology for space propulsion and power applications and is it so far off that fusion energy may be available by the time development efforts come to fruition?

AK: In my opinion, …. controlled fusion may be 100, 200 or 50 years away. We have a valley of death … between now and then. This TMSR can fill the gap but can also be used for space propulsion as my diagram above shows. Sure, the TRL of it needs to be brought up, but that’s what we are here for. It would be less heavy than [the] NERVA idea, especially if the chemical processing plant is separated and U233 is used for space propulsion rather than Th232. This would be the idea. The rate of fission is then controlled by the graphite rod moderators/controllers.

SSP: China has been working on a LFTR since 2011 and was recently cleared to start operating the reactor which is a direct descendent of the original experimental design that ORNL studied in the 1960s. It would appear that the Chinese have a significant head start. Is this concerning?

AK; Absolutely. All I can say is that we are idiots.

SSP: One of the disadvantages of thorium reactors is that large upfront costs are needed due to the significant amount of testing and licensing work for qualification of commercial reactors. The reactors also involve high fuel fabrication and reprocessing costs. How would you address these issues to attract investors?

AK: This idea really is a golden nugget, so to speak. The way to attract investors is to bring the TRL up with government (DoE, NASA and DoD) funds. When the light at the end of the tunnel is seen by investors, they will jump in with both feet. It may still be 5-10 years away but if we do not do it soon, (1) it will always remain so, and (2) some other country (China) or many other countries will DEFINITELY move ahead of us!

SSP: Another disadvantage is the presence of a significant level of gamma ray emissions due to Uranium-232 in the fuel cycle. How will this be dealt with safely?

AK: The Gamma ray radiation occurs from Protactinium 233 absorbing another neutron (before it Beta decays) to become Pa234 If it is separated in a chemical processing plant, it would remain easier to handle. From Wiki[pedia]: “The contamination could also be avoided by using a molten-salt breeder reactor and separating the 233Pa before it decays into 233U)”.

SSP: What regulatory and policy changes are needed to realize this technology in the U.S.?

AK: [The] NRC and DoE should allow smaller (~2 MW) size experimental reactors at Universities and research institutions right now.

SSP: On a related note, what efforts can leaders in private industry, academia and government undertake to begin the research and technology needed to commercialize thorium molten salt reactors.

AK: There are a few uncertain items in this nuclear process that Universities, small businesses and government research institutions can resolve. Government agencies need to fund SBIR/STTR type of initiatives to address the following technical issues:

  1. The sustainability of the heat exchangers whether they are to be made of Hastelloy-N or some other composite. This characterization is needed w.r.t. neutron flux intensity, temperature reached and time exposed (in months to years)
  2. The same as above for reactor containment vessels and pipes carrying the hot molten salt.
  3. Chemical separation for in-line or off-line work for Protactinium and U233.
  4. Tritium mitigation ideas (probably using CO2 in closed loop for electricity generation) or sequestration of it for later use in fusion when and if available. Designing and demonstrating tritium separators are key elements of DOE’s solid fuel MSR program at both universities and national laboratories
  5. Gamma ray mitigation or reduction

Thorium doesn’t spontaneously undergo fission – when an atom’s nucleus splits and releases energy that can generate electricity. Left to its own devices it decays very slowly, giving off alpha radiation that can’t even penetrate human skin, so holidaymakers don’t need to worry about sunbathing on thorium-rich beaches.

We don’t have as much experience with Thorium. The nuclear industry is quite conservative, and the biggest problem with Thorium is that we are lacking in operational experience with it. When money is at stake, it’s difficult to get people to change from the norm.

Irradiated Thorium is more dangerously radioactive in the short term. The Th-U cycle invariably produces some U-232, which decays to Tl-208, which has a 2.6 MeV gamma ray decay mode. Bi-212 also causes problems. These gamma rays are very hard to shield, requiring more expensive spent fuel handling and/or reprocessing.

Thorium doesn’t work as well as U-Pu in a fast reactor. While U-233 an excellent fuel in the slow-neutron regime, it is between U-235 and Pu-239 in the fast spectrum. So for reactors that require excellent neutron economy (such as breed-and-burn concepts), Thorium is not ideal.

Proliferation Issues

Thorium is generally accepted as proliferation resistant compared to U-Pu cycles. The problem with plutonium is that it can be chemically separated from the waste and perhaps used in bombs. It is publicly known that even reactor-grade plutonium can be made into a bomb if done carefully. By avoiding plutonium altogether, thorium cycles are superior in this regard.

Besides avoiding plutonium, Thorium has additional self-protection from the hard gamma rays emitted due to U-232 as discussed above. This makes stealing Thorium based fuels more challenging. Also, the heat from these gammas makes weapon fabrication difficult, as it is hard to keep the weapon pit from melting due to its own heat. Note, however, that the gammas come from the decay chain of U-232, not from U-232 itself. This means that the contaminants could be chemically separated and the material would be much easier to work with. U-232 has a 70 year half-life so it takes a long time for these gammas to come back.

The one hypothetical proliferation concern with Thorium fuel though, is that the Protactinium can be chemically separated shortly after it is produced and removed from the neutron flux (the path to U-233 is Th-232 -> Th-233 -> Pa-233 -> U-233). Then, it will decay directly to pure U-233. By this challenging route, one could obtain weapons material. But Pa-233 has a 27 day half-life, so once the waste is safe for a few times this, weapons are out of the question. So concerns over people stealing spent fuel are largely reduced by Th, but the possibility of the owner of a Th-U reactor obtaining bomb material is not.

Molten Salt Reactors

See our full page on Molten Salt Reactors for more info.

One especially cool possibility suitable for the slow-neutron breeding capability of the Th-U fuel cycle is the molten salt reactor (MSR), or as one particular MSR is commonly known on the internet, the Liquid Fluoride Thorium Reactors (LFTR). In these, fuel is not cast into pellets, but is rather dissolved in a vat of liquid salt. The chain reaction heats the salt, which naturally convects through a heat exchanger to bring the heat out to a turbine and make electricity. Online chemical processing removes fission product neutron poisons and allows online refueling (eliminating the need to shut down for fuel management, etc.). None of these reactors operate today, but Oak Ridge had a test reactor of this type in the 1960s called the Molten Salt Reactor Experiment [Wikipedia] (MSRE). The MSRE successfully proved that the concept has merit and can be operated for extended amounts of time. It competed with the liquid metal cooled fast breeder reactors (LMFBRs) for federal funding and lost out. Alvin Weinberg discusses the history of this project in much detail in his autobiography, The First Nuclear Era [amazon.com], and there is more info available all over the internet. These reactors could be extremely safe, proliferation resistant, resource efficient, environmentally superior (to traditional nukes, as well as to fossil fuel obviously), and maybe even cheap. Exotic, but successfully tested. Who’s going to start the startup on these? (Just kidding, there are already like 4 startups working on them, and China is developing them as well).

Loss of coolant accident consequences are significantly different than for Light Water Reactors

– Low driving pressure and lack of phase change fluids

– Guard vessels employed on some designs

– Planned vessel drain down to cooled, criticality-safe drain tanks on some designs

Dennis Wingo’s strategy for development of cislunar space and beyond

Image credit: NASA/Goddard/Arizona State University

The Cislunar Science and Technology Subcommittee of the White House Office Science and Technology Policy Office (OSTP) recently issued a Request for Information to inform development of a national science and technology strategy on U.S. activities in cislunar space.

Dennis Wingo provided a response to question #1 of this RFI, namely what research and development should the U.S. government prioritize to help advance a robust, cooperative, and sustainable ecosystem in cislunar space in the next 10 to 50 years?

In a prolog to his response Wingo reminds us that historically, NASA’s mission has focused narrowly on science and technology.  What is needed is a sense of purpose that will capture the imagination and support of the American people.    In today’s world there seems to be more dystopian predictions of the future than positive visions for humanity.  We seem to be dominated by fear of “…doom and gloom scenarios of the climate catastrophe, the degrowth movement, and many of the most negative aspects of our current societal trajectory.”  This fear is manifested by what Wingo defines as a “geocentric” mindset focused primarily within the material limitations of the Earth and its environs.

“The question is, is there an alternative to change this narrative of gloom and doom?”

He recommends that policy makers foster a cognitive shift to a “solarcentric” worldview: the promise of an economic future of abundance through utilization of the virtually limitless resources of the Moon, Asteroids, and of the entire solar system.  An example provided is to harvest the resources of the asteroid Psyche which holds a billion times the minable metal on Earth, and to which NASA had planned on launching an exploratory mission this year but had to delay it due to late delivery of the spacecraft’s flight software and testing equipment.

Artist rendering of NASA’s Psyche Mission spacecraft.  Credits: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin

Back to the RFI, Wingo has four recommendations that will open up the solar system to economic development and address many of the problems that cause the geocentrists despair. 

First, we should make the Artemis moon landings permanent outposts with year long stays as opposed to 6 day “camping trips”. This should be possible with resupply missions by SpaceX as they ramp up Starship launch rates (assuming the launch vehicle and lander are validated in the same timeframe, which seems reasonable). Next, we need power and lots of it – on the order of megawatts.  This should be infrastructure put in place by the government to support commerce on the Moon.  By leveraging existing electrical power standards and production techniques, large scale solar power facilities could be mass produced at low cost on Earth and shipped to the moon before the capability of in situ utilization of lunar resources is established.  Some companies such as TransAstra already have preliminary designs for solar power facilities on the Moon.

Which brings us to ISRU.  The next recommendation is to JUST DO IT.  This technology is fairly straightforward and could be used to split oxygen from metal oxides abundant in lunar regolith to source air and steel.  Pioneer Astronautics is already developing what they call Moon to Mars Oxygen and Steel Technology (MMOST) for just this application.

Conceptual illustration of the Lunar OXygen In-situ Experiment (LOXIE) Production Prototype. Credits: Mark Berggren / Pioneer Astronautics

And lets not forget the wealth of in situ resources that could be unlocked via synthetic geology made possible by Kevin Cannon’s Pinwheel Magma Reactor.

Conceptual depiction of the Pinwheel Magma Reactor on a planetary surface in the foreground and in free space on a tether as shown in the inset. Credits: Kevin Cannon

Of course there is water everywhere in the solar system just waiting to be harvested for fuel and life support in a water-based economy.

Illustration of an ice extraction concept for collection of water on the Moon. Credits: George Sowers / Colorado School of Mines

Wingo’s final recommendation is industrialization of the Moon in preparation for the settlement of Mars followed by the exploration of the vast resources of the Asteroid Belt.  He makes it clear that this is more important than just a goal for NASA, which has historically focused on scientific objectives, and should therefore be a national initiative.

“…for the preservation and extension of our society and to preclude the global fight for our limited resources here.”

With the right vision afforded by this approach and strong leadership leading to its implementation, Wingo lays out a prediction of how the next fifty years could unfold. By 2030 over ten megawatts of power generation could be emplaced on the Moon which would enable propellant production from the pyrolysis of metal oxides and hydrogen production from lunar water.  This capability allows refueling of Starship obviating the need to loft propellent from Earth and thereby lowering the costs of a human landing system to service lunar facilities.  From there the cislunar economy would begin to skyrocket.

The 2040s see a sustainable 25% annual growth in the lunar economy with a burgeoning Aldrin Cycler business to support asteroid mining and over 1000 people living on the Moon.

By the 2050s, fusion reactors provide power and propulsion while the first Ceres settlement has been established providing minerals to support the Martian colonies.

“The sky is no longer the limit”

By sowing these first seeds of infrastructure a vibrant cislunar economy will enable sustainable settlement across the solar system. A solarcentric development mythology may be just what is needed to become a spacefaring civilization.

Artist’s concept of an O’Neill space colony. Credits: Rachel Silverman / Blue Origin

Creating a Space Settlement Cambrian Explosion – Interview with Kent Nebergall

Credits: Kent Nebergall

I met Kent Nebergall during a cocktail reception at ISDC which took place May 27-29.  He chairs the Steering Committee for the Mars Society (MS) and gave a fascinating talk Sunday afternoon on Creating a Space Settlement Cambrian Explosion.  We had a wide-ranging discussion on some of his visions for space settlement and he agreed to collaborate on this post.  We’ll do a deep dive into some of the topics he covered in his talk, which is available on his website at MacroInvent.

In summary, he breaks down some of the key challenges of space settlement and proposes economic models for sustainable growth. His roadmap lays out a series of space settlement architectures starting with a variant of SpaceX Starship used as a building block for large rotating habitats and surface bases for the moon, Mars, and asteroids. Next, he presents his Eureka Mars Settlement design which was entered in the MS 2019 Mars Colony Design Contest addressing every technical challenge. Finally, an elegant system for para-terraforming Martian canyons in multi-layered habitats is proposed, “…with the goal of maximizing species diversity and migration beyond our finite world. We not only preserve and diversify species across biomes, but engineer new species for both artificial and exoplanetary habitats. This is an engine for creating technology and biological revolutions in sequence so that as each matures, a new generation is in place to keep driving expansion across the solar system and beyond.”

Here’s my interview with Kent conducted via email.  I hope you enjoy it!

SSP: You created a checklist of the required technologies needed to enable space settlement where each row is sorted by increasing necessity while the columns are sorted by greater isolation from Earth.

Credits: Kent Nebergall

Musk has started to crack the cheap access to space nut and large vehicle launch at upper left with Starship but we’re not there yet.  Given that Musk’s timelines always should be taken with a grain of salt, and the challenge of planetary protection (bottom of column 3) could potentially prevent Musk from obtaining a launch license for a crewed mission before scientists have a chance to robotically search for signs of life, what is your estimation of the probability that Humans will land on Mars by 2029, in accordance with your proposed timeline (see below)?

KN: Elon time is real, definitely.  My outside analysis implies that SpaceX is using Agile development systems borrowed from the software industry.  The benefit of Agile is that technological progress is as fast as humanly possible.  The bad news is that it largely ignores things that traditional management styles value, such as being able to predict the date something is really finished.  At any rate, my general conclusion is that anything Elon predicts will be off by 43 percent as a baseline, assuming no outside factors are involved.  Starship has slid more because the specifications kept changing, much as they did with Falcon Heavy.

We seem to be locked in on the early orbital design, which seems to be purely for getting Starlink 2 satellites in place and providing return on investment while getting the core flight systems refined. It doesn’t need solar panels, crew space, or the ability to stay on orbit more than a day. Crewed Starship may take another few years and use a smaller than expected cabin with a large payload bay. 2029 is the most recent year of a crewed Mars landing from Elon (as of March, 2022). If we allow for Elon Time, we could expect cargo in that launch window. I suspect one vehicle may try to return to prove out that flight range, like return to Earth from deep space. The first mission would largely be watching Optimus Prime robots setting up a farm of solar panels to make fuel for the return trip.

“The irony is that Elon could just pack the ship with Tesla humanoid robots for the first few missions…”

The planetary protection regulatory barrier is quite possible, yes. We just saw the regulatory findings for Bocca Chica. That requires several frivolous preconditions for flight, like writing an essay on historic monuments and accommodating ocelots, which haven’t been seen in the area in forty years. I doubt the capacity of political Simon Says playground games like has been exhausted yet.

What we’ve seen historically is that those who cannot compete will throw up regulatory and legal barriers. However, we’ve also seen that these efforts eventually burn out after a few years. This has been true with paddle wheel river ships, steam ships, railroads, and airlines. It’s playing out with Tesla and the big three domestic automakers now as well. Most of those tricks were already pulled with Falcon 9, so I think that path is largely burned through. I’m nearly certain they will try the planetary protection argument later. We have already seen with the ocelots that they are willing to protect absent species.

The irony is that Elon could just pack the ship with Tesla humanoid robots for the first few missions and build a base while running life searches in the area. The base could be built with nearly the same productivity as a human crew, and the cultural pressure to move humans into it would be quite high if no life is found in the meantime. It would be great marketing for the Tesla robots as well.

SSP: The table seems comprehensive and covers just about everything.  Has it changed or been updated in 18 years?  I noticed “Spacesuit Lifespan”.  Why is this a challenge for space settlement?

KN: The table is fairly solid in terms of subject matter, but I’ve started a project to rebuild it.  I only found out recently that NASA’s term for this is RIDGE (Radiation, Isolation, Distance, Gravity and Environment).  My slicing into 26 categories is more precise – literally an alphabet of categories.

First, if it were a true “periodic table” analog, it would transpose the columns.  But it’s much easier to fit in PowerPoint this way. Second, I have used this principle for other challenge sets and found interesting implications, so I may make a more advanced version in the future with far more depth. I’ll still use this for PowerPoint, though, because it can be read from the back row in under a minute. Third, each “challenge” is actually a family of challenges.  There are multiple health problems with microgravity, for example, but one root cause – the absence of gravity.  So, while each challenge in the table has many sub-factors, there is a single root cause and a solution that eliminates that cause also eliminates all sub-sets of problems.  If a solution cannot fix the root cause, than separate solutions are needed for each child challenge like bone loss.

Spacesuit lifespan for the ISS is an issue because the suits are often older than the station itself.  On the moon, the spacesuits picked up abrasive moon dust in the joints and could have eventually lost flexibility or pressure integrity if they’d been used much longer.  A Mars suit is in some ways easier because the soil is more weathered and therefore less abrasive. Space settlement hits a standstill if you can’t go outside.  Unfortunately, efforts to replace them have cost a billion dollars so far and have just been restarted for an even higher price tag.  It seems to be the classic example of doing as little progress as possible while spending as much money as possible.  There have been some great technologies developed but there has been no pressure to finish a completed suit.  As the old saying goes, “One day, you just have to just shoot the engineer and cut metal”.

At one point, SpaceX outright said, “We can do it.” But NASA showed no interest, and SpaceX apparently didn’t bid on the moon suit designs this time.  They have been converting the ascent suit from Dragon to one able to do spacewalks in the 1960’s Gemini sense for launch this year.  I wouldn’t be surprised if they develop a moon suit just because they can, and on their own dime.  It would be quite embarrassing for all involved, including SpaceX, if we had a 100 tonne payload moon lander capable of holding dozens of people, and not have a single suit capable of letting them leave the ship.

SSP: You mentioned orbital debris being a potential barrier for your plan’s LEO operations and you’ve come up with methods for shielding early orbital habitats, but they may not be effective against larger debris fragments.  The X-prize Foundation is considering an award for ideas to solve this problem and there are numerous startups on the verge of addressing the issue.  Such a solution would have to be implemented quickly and on a massive scale for your timeline to be achieved.  If orbital debris looks like it may still be a problem for larger orbital settlements until they can be established in higher orbits, could your plan be modified to perhaps include debris removal as an economic driver?  [SpaceX president and COO Gwynne Shotwell has suggested that Starship could be leveraged to help clean up LEO]

The problem must be sliced up, just as the other grand challenges are sliced up. We need several approaches at once.  First, refueling starship is a bit risky, and the risk rises with prolonged exposure to the debris hazard.  SpaceX originally wanted to launch the Mars vehicle, then refuel it on orbit over several tanker flights.  More recently, they are implying they would fly a tanker up, fill it with several other tankers, then refuel the Mars or Lunar vehicle in one go.  This makes a lot more sense.  A tanker or depot hit by debris would be a space junk hazard, but it wouldn’t cost lives or science hardware. 

We need to de-orbit the largest items, many of which are spent rocket stages.  SpaceX has offered to gobble them up with Starship, but that means a lot of delta V in terms of altitude, inclination, elliptical elements, and so on.  I could see a sort of penny jar approach where they drop off a satellite, then pick up an old one or two (the satellite and old rocket stage) before returning. Realistically, though, old rocket stages and satellites that haven’t vented every single tank (main and RCS [reaction control system]) will be hazardous to approach. 

It seems the best solution would be mass-produced mini-satellites with ion drive and electrodynamic tethers.  Each mini-sat would find a spent rocket stage or defunct satellite and add an electrodynamic tether to drag it down using Earth’s magnetic field while also powering an ion engine to assist in de-orbiting.  You would have to do a few at a time because the tethers themselves would become a hazard if we had thousands of them cutting through space like razor ribbons.

I could also see a spider robot that would grab larger satellites with propellant still on board, wrap them up like a spider wrapping a bug in silk, and then puncturing the tanks carefully to both refill itself and render the satellite inert.  It would then be safe to grab with a Starship or de-orbit with a drag or propellant system [Another concept for debris removal could be Bruce Damer’s SHEPHERD which we covered a year ago. Although originally conceived for asteroid capture, a pathfinder application could be satellite servicing/decommissioning]. 

We didn’t create the problem in a day, and we can’t solve it quickly either.  But we can take an approach of de-orbiting two tons for every ton launched once we have mass produced systems for doing so.  Maybe other launch providers can grab defunct satellites with their orbital launch stages before dragging them both into the Pacific.

That said, we can’t get every paint chip and bolt out of orbit this way.  We will hit a law of diminishing returns.  Anything below that line will require a technology to survive impacts.  The pykrete ice shield I proposed could be much smaller, such as just one hexagonal hangar big enough for 2-3 starships in LEO at a time.  Once refueled, the craft would go to the much safer L5 point or directly to the moon if that is the destination.  Keeping a ring at L5 would not require a massive ice shield or centrifuge habitat to be a useful waystation.  But those would be designed into it up front to give room for expansion. 

If we decided that a Mars mission had to wait for all the infrastructure I proposed, we’d be in the same trap that Von Braun would have fell into of wanting massive infrastructure before the first crewed lunar mission.  You need a balance of infrastructure and exploration to give both meaning.

 “We can democratize early if we give some participation method in the initial investments in time, technology, and financing.”

SSP: Musk says he needs 100s of starships to deliver millions of tons of materials to support large cities on Mars by mid-century (his timeline).  You’ve created a somewhat more reasonable timeline for Starship round trip logistics for this effort based on Hohmann transfer orbits and Mars orbital launch windows (i.e. every 2 years).

Credits: Kent Nebergall

What will be the economic driver for such an ambitious project besides Musk just “making it so”?  I saw later in your presentation that you proposed an initial sponsorship and collectables market followed by MarsSpec competitions.  How will these initiatives kickstart sufficient market enthusiasm to support such an enormous fleet of Starships?

KN: It’s a complex topic, and easily a book in itself.  To cut to the core of it, any major discovery or invention that is not democratized becomes historic or esoteric rather than revolutionary.  Technology revolutions do not take place in particle accelerators any more than music revolutions take place in symphony orchestra pits.  Things that don’t impact people constantly are simply curiosities.  Even many things taken for granted like GPS and running water are ignored, but they remain transformative.  When the furnace filter factory worker sends part of his month’s labor to Mars, we have space settlement.  We can democratize early if we give some participation method in the initial investments in time, technology, and financing.  But these waves will go from new and novel to basic and ignored rather quickly, and this is especially true if they succeed. 

Imagine being a medieval merchant and getting an opportunity to send a bag of grain on a voyage to Cabot or some other explorer.  In return you get a rock from the opposite side of the world, a certificate saying what you gave and authenticating what you got back, and a tiny bit of participation in the history of your era that you can share with your children.  A decade later, your son is working in a smelting plant in a port city and making hardware for houses in the new world.  In another decade your grandchildren are growing crops in Maryland.  It’s a bit like that.  Each wave will fund and create the industrial and skill base for the next wave before becoming culturally ubiquitous.  The last child has no interest in a rock from his Maryland backyard.  But to the grandfather living a generation or two beforehand, it may as well be from the moon. The wave of sponsorship, followed by specifications for space-rated products, followed by biological engineering in lower gravity worlds will each create benefits and enthusiasm back on Earth.  After that last wave, the economic ecosystem becomes permanently multi-planetary.

Everything else about space is a simple engineering problem.  Minds, trends, budgets, and so on are not so well behaved as atoms or heat, but they have a lot of history that we can use to model workable solutions. This is the one I came up with.

“The problem with any grand engineering venture is that every design looks good until it comes in contact with reality.” 

SSP: The Eureka Space Settlement concept features dual centrifuges providing artificial gravity equivalent to the Moon and Mars. 

Eureka settlement duel centrifuge facility providing lunar gravity on the inner ring and Mars gravity on the outer one.  Credits: Kent Nebergall

I like the idea of using variable gravity to study biological effects on plant and mammalian physiology, adapting species to be multi-planetary and prepping for settlements that will need gravity as we move out into the outer solar system, but this can be done more cheaply in LEO or in cislunar space as outlined earlier in your architecture.  Why not simplify the Eureka settlement by eliminating the centrifuge and going with normal Mars gravity? 

KN: The problem with any grand engineering venture is that every design looks good until it comes in contact with reality.  You can’t model every issue up front, and one of the hardest to work out without experience are multi-generational ecosystems.  If we build a $100 billion Mars city and the kids have birth defects, we have a huge liability issue and a city that will be turned over to robots or dust.

The advocates assume all will be fine, but they tend to downplay issues.  The critics assume all will go poorly, but they never want to venture past the status quo.  Reality will be a mixed bag of data points on a bell curve between the two with both unknown threats and opportunities waiting for discovery.  This unknown is a big reason for the enthusiasm to try in the first place.

I came up with the steelman methodology by taking all the criticisms and range of danger possibilities and cranking the bell curve values up a few sigma to the nasty side.  The idea is that if you can STILL make an affordable design that pays for itself when the universe is coming after you with a hammer, you probably will be fine when the bell curve is realized.  You should always have a back-down plan to have surface domes with no centrifuges, or simply use the centrifuges for pregnant mammals and trees that need to fight gravity to have enough limb strength to bear fruit.  That said, another beauty of this design is that a Pluto colony or asteroid colony will almost certainly need centrifuges for multigenerational life.  Prototyping it on Mars may be overkill for Mars, but perfect for Pluto or Enceladus. This makes it much easier for Mars settlers to think about colonizing the outer solar system.  Even the children of our dreams need dreams, after all. 

“A space outpost must bring materials to itself, so a system like that without surface outposts or asteroid mining is a dead end.” 

SSP: In the proposed first wave of the architecture, rotating settlements are created from Starship building blocks in high orbit to create “…deep space industrial outposts in the O’Neill tradition with a thousand inhabitants each. On the lunar and Martian surface, we simply take a slice of the ring architecture with starships inside as an outpost.”  With the amount of investment needed to build the infrastructure to transport materials and people for large settlements on Mars, and given that the biggest grand challenge on your chart is reproduction (which may not be possible in less than Earth’s gravity), why wouldn’t it make more sense to focus efforts on building larger 1G rotating free space settlements where we know having children is possible?

KN: It’s not so much a roadmap of first this structure here, then that one there.  It’s a draft set of compatible building standards for everywhere.  Think about the standard sizes for bricks, pipes, and wiring and how entire continents use them interchangeably over a hundred years or more.  My goal was to lay out what the maximum amount of infrastructure would look like with the minimum number of parts.

There is a false dichotomy between structures like space stations made entirely from material from Earth, and local materials formed with 3D printers that can do everything with complete reliability.  Both are impractical extremes, and to some degree strawman designs.  Importing everything is prohibitively expensive even with Starship.  Conversely, creating structures from random conglomerates of whatever material is at the landing site will be too brittle. By proposing bags that can be made of basalt cloth but that will initially come from Earth, I’m bridging the two extremes.  They can be filled with dust, water, sand, or whatever is fine grained enough and can be either sintered or cemented in place.  Such structures don’t have to be aligned with absolute precision and can follow soft contours or whatever is needed.  You also don’t need four meters of shielding for cosmic rays if you augment it with magnets. They can be scaled in layers or levels as needed, just like bricks or two by four boards are in homes.

A space outpost must bring materials to itself, so a system like that without surface outposts or asteroid mining is a dead end. 

Centrifuges for surface settlements are a bit awkward, to be sure.  A train system that keeps the floor below you when spinning or de-spinning is a better system at first.  Eureka was mainly done with fixed pitch decks just to show that the scale of a centrifuge for a large torus L5 ring could be done on a surface with some clever engineering.  My original design goal was to make the cars, car beds, rails, and buildings swappable without stopping the ring rotation.  In the same way, the pressure shell has inner and outer walls that can in theory be replaced while the other keeps pressure.  It’s probably not necessary, but the goal is to remove all design barriers early in the thought process so that future engineers aren’t painted into corners.

SSP: After the first settlements are established on Mars, you suggest starting to adapt the Mars environment to Earth-like conditions through “para-terraforming” small parts of the planet such as the Hebes Chasma, a canyon the size of Lake Erie just north of Valles Marineris.  This feature has the advantage of being right on the equator and closed at both ends so that kilometer sized arch structures could enclose the valley to warm the local environment with many Eureka settlements below.

Top: Artist concept of kilometer scale arches built above space settlements and enclosing a Martian canyon to provide a para-terraformed environment.  Bottom: Magnificent view from below depicting these domes at cloud level on a typical summer day. Credits: Kent Nebergall / Aarya Singh

Planetary protection was mentioned as one of the grand challenges to be overcome.  Some space scientists are advocating for robotic missions to answer the question of whether life existed (or still exists) on Mars before humans reach Mars.  No such missions are planned prior to Musk’s timeline for putting humans on Mars at the end of this decade.  Are you assuming that by the time humans are ready for para-terraforming that the question of life on Mars will be answered? 

KN: We would certainly know if active, widespread, indigenous life was an issue by the time of building canyon settlements the size of Lake Erie.  Even isolated pockets would leave fossil traces in broader zones.

The bigger question is that of whether or not it is possible to settle Mars if there is a risk of crossing into a local biome accidently.  Eureka is built entirely on the surface, so it doesn’t cross the sterilized surface soils if it doesn’t have to.  We should be able to mine from Mars with sterile equipment and be able to sterilize further after robotic extraction. We can extract water ice, volcanic rock, and surface dust and build the entire settlement from those basic materials. We can avoid sedimentary materials until we are confident they are not biologically active. 

I suspect any life on Mars is from Earth, and brought by meteors.  The cross-traffic of meteors throughout the solar system may mean bacterial and possibly slightly more complex life all over the solar system from the late bombardments of Earth.  We should consider this no more exotic than breathing in Australia or swimming in the ocean.  Microbes adapted for those environments would not be adapted to be pathogenic because why spend billions of generations preparing for a food source that may never arrive?  We would have a bigger problem with random toxins that hadn’t leached out or reacted to life billions of years ago than with life itself.  I respect the work of those who want sterile capsules of pristine soil captured by the current Mars rover prior to human arrival.  That certainly makes sense.  I like Carol Stoker’s Icebreaker mission concept. I think NASA and universities would be smart to work with SpaceX on simple rack-mount instrumentation that could be flown to planetary destinations en masse and serviced by Optimus Prime Tesla robots. 

“My goal is to build the next generation of the quiet heroes of the dinner table.  And certainly a few of those will be leaders too.”

SSP: You’re writing a book about creating an inventor mindset to enable a million “mini-Musks” – people who are not necessarily rich, but who shake up the world in constructive and innovative ways.  Tell us more about this philosophy.

KN: The core concept is that if you could get a thousand people to do a hundredth of what Elon has accomplished, it would be a tenfold increase in what we’ve seen in terms of his contribution to technology.  That’s not a very big ask individually, even if it’s more garage labs than factories for now.  I looked deeply into what Elon Musk does and what other inventors like him have done.  I’ve looked at technology revolutions and what key things spark the massive growth waves of innovation.  Obviously, there are intersections between the two. 

I’m writing a short book this summer to document Elon’s methodologies in an approachable and comprehensive reference.  If it attracts enough interest, I can take that core module into different directions.  One is digging more into how the mind invents.  Another is breaking down how technology revolutions work.  A third is all this work on space settlement. I’ve also come up with intellectual property around the root of these concepts that would be valuable software and services.  I guess we’ll see what reaction the Elon book gets and see where that goes.  It’s a bit heartbreaking to see millions spent on NFTs and other random “stupid money” projects when I’m coming up with concepts for trillion-dollar companies as a hobby.

While we talk a lot about Musk, there are thousands of people who work just behind the spotlight.  My father was a production test pilot who put his life on the line to ensure that bombers were flyable for national security, and that the technology that became the commercial jet airliner a decade later would be safe for billions of travelers.  He worked with some historic figures of aviation, and his dinner stories were amazing.  The Mars Society gave me a way to repeat a little of this history for myself in this dawn of the Mars Age. 

Technology revolutions may celebrate a few leaders.  But without thousands of talented people several feet behind these inventors, they are little more than curiosities – Di Vinci notebooks or Antikythera mechanisms.  My goal is to build the next generation of the quiet heroes of the dinner table.  And certainly a few of those will be leaders too.  That is my hope.  To fill the diaries of pioneers that give permanent cultural bedrock to the accomplishments of people like Elon.  Otherwise, even a moon landing is a short story written in water.


Don’t miss Kent’s appearance on The Space Show coming up on Sunday July 10 where you can call in and ask him in person your own questions about these and other visions for space settlement.

NewSpace features the dawn of the age of space resources

Illustration showing concept of operations of the RedWater mining system for water extraction on Mars developed by Honeybee Robotics. Credits: Mellerowicz et al. via New Space

The editorial in the latest issue of New Space, coauthored by two of SSP’s favorite ISRU stars, Kevin Cannon and George Sowers, describes the dawning age of space resource utilization. Cannon, who guest edits this issue, and Sowers are joined by the rest of the leadership team of the graduate program in Space Resources at the The Colorado School of Mines: Program Director Angel Abbud-Madrid and professor Chris Dreyer. The program, created in 2017, has over 120 students currently enrolled. These are the scientists, engineers, economists, entrepreneurs and policymakers that will be leading the economic development of the high frontier, creating the companies and infrastructure for in situ resource utilization that will enable affordable and prosperous space settlement.

How can regolith on the Moon and Mars be refined into useful building materials? What are the methods for extracting water and oxygen from other worlds for life support systems and rocket fuel? Is it legal to do so? Will private property rights be granted through unilateral legislation? What will space settlers eat? The answers to all these questions and more are addressed in this issue, many of the articles free to access.

One of my favorite pieces, the source of this post’s featured image, is on the RedWater system for harvesting water on Mars. This technology, inspired by the proven Rodwell system in use for sourcing drinking water at the south pole, was developed by Honeybee Robotics, just acquired by Blue Origin earlier this year. End-to-end validation of the system under simulated Mars conditions demonstrated that water could be harvested from below an icy subsurface and pumped to a tank up on the surface.

We need to start thinking about these technologies now so that plans are ready for implementation once a reliable, affordable transportation system comes on line in the next few years led by companies such as SpaceX and others. Sowers has been working on thermal ice mining on cold worlds throughout the solar system for some time, predicting that water will be “the oil of space”. Cannon has been featured previously on SSP with his analytical tools related to lunar mining, the Pinwheel Magma Reactor for synthetic geology and plans for feeding millions of people on Mars.

Crops in space: providing sustenance and life support for settlers

Roadmap for research and infrastructure development for growing crops in space for human sustenance and life support, from the ISS to Mars. Credits: Grace L. Douglas, Raymond M. Wheeler and Ralph F. Fritsche

Space settlement advocates know that we will have to take our biosphere with us to space to produce food, provide breathable air and recycle wastes. Completely closing the system, i.e. recycling everything is a huge technological challenge, especially on a small scale like what is planned for settlements in free space or on the surfaces of the Moon or Mars. Fortunately, there are plenty of raw materials in the solar system for in situ resource utilization so we can live off the land, so to speak, until our bioregenerative life support system efficiencies improve.

Early research into crop production in space has been performed on the ISS. But the road ahead for space agriculture in the context of life support systems needs careful planning to pave the way toward biologically self-sustaining space settlements. A team of scientists at NASA is working on a roadmap toward sustainability with a step-by-step approach to bioregenerative life support systems (BLSS) that will provide food and oxygen for astronauts during the space agency’s mission plans in the decades ahead. In a paper in the journal Sustainability they identify the current state of the art, resource limitations and where gaps remain in the technology while drawing parallels between ecosystems in space and on Earth, with benefits for both.

Simulation and modeling of BLSS concepts is important to predict their behavior and help inform actual hardware designs. A team at the University of Arizona performed a study recently analyzing the inputs and outputs of such a system to improve efficiencies and apply it to food production on Earth in areas challenged by resource limitations and food insecurity. Sustainable ecosystems for supporting humans on and off Earth have similar goals: minimizing growing space, water usage, energy needs and waste production while simultaneously maximizing crop yields. The team presented their findings in a paper presented at the 50th International Conference on Environmental Systems held last July. In the study, a model of an ecosystem was created consisting of various combinations of plants, mushrooms, insects, and fish to support a population of 8 people for 183 days with an analysis of total growing area, water requirements, energy consumption and total wastes produced. The study concluded that “In terms of resource consumption, the strategy of growing plants, mushrooms, and insects is the most resource-efficient approach.”

At the same conference, an update was provided on a Scalable, Interactive Model of an Off-World Community (SIMOC). SIMOC was described in a previous post on the Space Analog for the Moon and Mars (SAM) located at Biosphere 2 in Arizona. SIMOC is a platform for education meeting standards for student science curriculum. Pupils or citizen scientists can customize human habitats on Mars by selection of mission duration, crew size, food provisions as well as choosing types of plants, levels of energy production, etc.. Users gain an understanding of the complexity of a BLSS and the tradeoffs between mechanical and biological variables of life support for long duration space missions. There is much to be learned on the limitations and stability of closed biospheres, as discussed last year.

Image of Biosphere 2, a research facility to support the development of computer models that simulate the biological, physical and chemical processes to predict ecosystem stability. Credits: Biosphere 2 / University of Arizona

Across the Pond, our European friends at LIQUIFER Systems Group are working on greenhouses for the Moon and Mars derived from the EDEN ISS simulation facility in Antarctica.

A BLSS based on plant biology could be augmented with dark ecosystems, the food chain based on bacteria that are chemotrophic, i.e. deriving their energy from chemical reactions rather then photosynthesis, which could significantly reduce the inputs of energy and water.

A concept for a lunar farm called Lunar Agriculture, Farming for the Future was published in 2020 by an international team of 27 students participating in the Southern Hemisphere Space Studies Program at the International Space University.

Layout of a potential subsurface lunar farm. Credits: International Space University and University of South Australia

As a treat to cap off this post, a retired software engineer and farmer named Marshall Martin living in Oklahoma provided his perspective on crops in space on The Space Show recently. A frequent caller to the program, this was his first appearance as a guest where, like the NASA team mentioned earlier, he recommends a phased approach to space farming starting with small orbital facilities, testing inputs and outputs as we go, to ensure the economics pay off at each stage of our migration off Earth. He even envisions chickens and goats as sources of protein and milk, although the weight limitations for inclusion of these animals in space-based ecosystems may not be possible for quite some time. Its unlikely that cows will ever make it to space but cultured meat production is a real possibility for the carnivores among us which is being studied by ESA.

Cattle in the cargo bay of the Firefly-class transport spaceship Serenity. Cows probably won’t make it to space because of weight, volume and resource limitations but cultured meat is a real possibility. Image from the television series Firefly. Credits: Josh Whedon/ Mutant Enemy, Inc. in associations with Twentieth Century Fox Television

Finally, for those thinking long term of eventual settlement of the galaxy, there are even some people modeling life support systems for interstellar arks.

Image of the interior of a worldship habitat for interstellar travel. Credits: Michel Lamontagne / Principium, Issue 32, February 2021

Update on the Photonic Laser Thruster and the interplanetary Photonic Railway

Diagram depicting the layout of the Photonic Laser Thruster (PLT). Credits: Young K. Bae, Ph.D.

SSP reported last year on the promise of an exciting new Photonic Laser Thruster (PLT) that could significantly reduce travel times between the planets and enable a Phonic Railway opening up the solar system to rapid exploration and eventual settlement. The inventor of the PTL, Dr. Young K. Bae has just published a paper in the Journal of Propulsion and Power (behind a paywall) that refines the mathematical underpinnings of the PLT physics and illuminates some exciting new results. Dr. Bae shared an advance copy of the paper with SSP and we exchanged emails in an effort to boil down the conclusions and clarify the roadmap for commercialization.

Illustration of a Photonic Railway using PLT infrastructure for in-space propulsion established at (from right to left, not to scale) Earth, Mars, Jupiter, Pluto and beyond. Credits: Young K. Bae.

In the new paper, Dr. Bae refines his rigorous analysis of the physics behind the PLT confirming previous projections and discovering some exciting new findings.

As outlined in the previous SSP post linked above, the PLT utilizes a “recycled” laser beam that is reflected between mirrors located at the power source and on the target spacecraft. Some critical researchers have argued that upon each reflection of the beam off the moving target mirror, there is a Doppler shift causing the photons in the laser light to quickly lose energy which could prevent the PLT from achieving high spacecraft velocities. The new paper conclusively proves such arguments false and confirming the basic physics of the PLT.

There were two unexpected findings revealed by the paper. First, the maximum spacecraft velocity achievable with the PLT is 2000 km/sec which is greater than 10 times the original estimate. Second, the efficiency of converting the laser energy to the spacecraft kinetic energy was found to approach 50% at velocities greater than 100 km/s. This is surprisingly higher than originally thought and is on a par with conventional thrusters – but the PLT does not require propellent. These results show conclusively that once the system is validated in space, the PLT has the potential to be the next generation propulsion system.

I asked Dr. Bae if anything has fundamentally changed recently in photonic technology that will bring the PLT closer to realization. He said that the interplanetary PLT can tolerate high cavity laser energy loss factors in the range of 0.1-0.01 % that will permit the use of emerging high power laser mirrors with metamaterials, which are much more resistant to laser induced damage and are readily scalable in fabricating very large PLT mirrors.

With respect to conventional thrusters, he said the PLT can be potentially competitive even at low velocities on the order of 10 km/s, especially for small payloads. This is because system does not use propellant which is very expensive in space and because the PLT launch frequency can be orders of magnitude higher than that of conventional thrusters. Dr. Bae is currently investigating this aspect of the system in terms of space economics in depth.

The paper acknowledges that one of the most critical challenges in scaling-up the PLT would be manufacturing the large-scale high-reflectance mirrors with diameters of 10–1000m, which will likely require large-scale in-space manufacturing. Fortunately, these technologies are currently being studied through DARPA’s NOM4D program which SSP covered previously and Dr. Bae agreed that they could be leveraged for the Photonic Railway.

Artist’s concept of projects, including large high-reflectance mirrors, which could benefit from DARPA’s (NOM4D) plan for robust manufacturing in space. Credits: DARPA

I asked Dr. Bae about his timeline and TRL for a space based demo of his Sheppard Satellite with PLT-C and PLT-P propellantless in-space propulsion and orbit changing technology. He responded that such a mission could be launched in five years assuming there were no issues with treaties on space-based high power lasers. There is The Treaty on the Prevention of the Placement of Weapons in Outer Space but I pointed out that the U.S. has not signed on to this treaty. Article IV of the Outer Space Treaty states that “…any objects carrying nuclear weapons or any other kinds of weapons of mass destruction…” can not be placed in orbit around the Earth or in outer space. Dr. Bae said “We can argue that the [Outer Space] treaty regulation does not apply to PLT, because its energy is confined within the optical cavity so that it cannot destroy any objects.  Or we can design the PLT such that its transformation into a laser weapon can be prevented.”

He then went on to say: “For space demonstration of PLT spacecraft manipulation including stationkeeping, I think using the International Space Station platform would be one of the best ways … I roughly estimate it would take $6M total for 3 years for the demonstration using the ISS power and cubesats. The Tipping Point [Announcement for Partnership Proposals] would be a good [funding mechanism] …to do this.”

Once the technology of the Photonic Railway matures and is validated in the solar system Dr. Bae envisions its use applied to interstellar missions to explore exoplanets in the next century as described in a 2012 paper in Physics Procedia.

Conceptual illustration of the Photonic Railway applied to a roundtrip interstellar voyage to explore exoplanets around Epsilon Eridani. This application requires four PLTs: two for acceleration and two for deceleration. Credits: Young K. Bae

Be sure to listen live and call in to ask Dr. Bae your questions about the PLT in person when he returns to The Space Show on March 29th.

Dark ecosystems for food production in space

Artist concept of industrial hubs of circular food production including vertical farming, bioreactors, greenhouses, water treatment and energy production. The same technology has duel use and could be leveraged for life support systems in space settlements. Credits: Mark Goerner / Orbital Farm

Typical plans for space settlements include greenhouses for growing plants as a source of food as well as a key component of ecological closed life support systems to help produce air and recycle water. There are efforts to make these space farms as compact and efficient as possible utilizing hydroponics and LED lighting. But the energy, volume, water and labor requirements can still be a challenge. A new approach is described in a paper in New Space by Michael Nord and Scot Bryson that is based on Earth’s dark ecosystem, the food chain based on bacteria that are chemotrophic, i.e. deriving their energy from chemical reactions rather then photosynthesis. An example of these type of organisms are bacteria that live near volcanic sulfur vents at the bottom of the ocean. They synthesize organic molecules from hydrogen sulfide, carbon dioxide and oxygen which in turn nourish giant tube worms.

Giant tube worms nourished by organic molecules synthesized by chemotrophic bacteria near deep undersea sulfur vents. Credits: Biology Dictionary

“Earth’s dark ecosystem affords us an elegant solution.”

This is not new technology. Fermentation is an example of this biological process which humans have been using for thousands of years in the production of food and drink. NASA explored this option in the 1960s in their plans for sources of food to sustain astronauts on long duration space flights. Synthetization of “single-celled proteins” showed promise for astronaut sustenance but NASA’s priorities shifted after Apollo putting less emphasis on manned spaceflight leading to funding cuts, which put these efforts on hold.

Fast forward to today, there are many companies focusing on using dark ecology as an alternative source of protein both for an ever increasing human population and for animal agriculture. The single-celled proteins are produced by fermentation in bioreactors to produce products mainly used in animal feed but at least one firm, Quorn, is focused on human consumption.

Mycoprotein for human consumption produced by fermentation of the fungus Fusarium venenatum. Credits: Quorn

Others in both government and industry are transitioning Earth’s agricultural approach to a circular economy for food, where food waste is designed out, food by-products are re-used at their highest value, and food production regenerates rather than degrades natural systems. Innovations by companies involved in this type of farming here on Earth have direct applications in bioregenerative life support systems in space. Orbital Farm, who’s CEO Scot Bryson coauthored the paper, is one such company exploring commercialization opportunities in this field.

The authors performed an analysis of energy inputs and material flows for conventional photosynthetic food production when compared to a dark ecosystem and found that the latter is 100 times more efficient in water and energy use, and 1000 times better in terms of volume. But that is not all. There is an added benefit in that “…the very same organisms can be engineered to make pharmaceuticals, plastics, and a variety of other useful complex organic compounds.”

The advantages for space settlement are clear. Although photosynthetic plant growth will play a role in life support systems including the added benefit to humans of the aesthetic value of living among plants, dark ecology can augment food from photosynthetic plants with efficient and sustainable protein production.

“…for bulk production of calories, chemotrophic organisms have enormous efficiencies over production with staple crops, which will be nearly impossible to ignore for mission designers.”

Moon-Mars dumbbell variable gravity research facility in LEO

Conceptual illustration depicting the deployment sequence of a LEO Moon-Mars dumbbell partial gravity facility serviced by SpaceX’s Starship. Left: Starship payloads being moored by a robot arm. Center: 1.6 m ID inflatable airbeams (yellow) play out from spin access and mate with dumbbell end modules. Rectangular solar arrays deploy by hanging at either end as spin is initiated via thrusters at Mars module. Right: Full deployment with Starship and Dragon docked at spin axis hub. Credits: Joe Carroll via The Space Review

There may be no single human factor more important to understand on the road to long term space settlement than determination of the gravity prescription (GRx) for healthy living in less than Earth normal gravity. What do we mean by the GRx? With over 60 years of human space flight experience we still only have two data points for stays longer than a few days to study the effects of gravity on human physiology: microgravity aboard the ISS and data here on the ground. Based on medical research to date, we know that significant problems arise in human health after months of exposure to microgravity. To name a few, osteoporosis, immune system degradation, diminished muscle mass, vision problems due to changes in interocular pressure and cognitive impairment resulting memory loss and lack concentration. Some of these problems can be mitigated with a few hours of daily exercise. But recovery upon return to normal gravity takes considerable time and we don’t know if some of these problems will become irreversible after longer term stays. We have virtually no data on human health at gravity levels of the Moon and Mars, as shown in this graph by Joe Carrol:

Graph of the correlation between human health vs gravity showing the two data points where we have useful data. Whether the relationship is a linear function or something more complex is an unknown of great importance for space settlement. Credits: Joe Carrol presentation at Starship Congress 2019 and Jon Goff post on Selenium Boondocks Nov 29, 2005

The more important question for permanent space settlements is can humans have babies in lower gravity? If we go by the National Space Societies’ definition, an outpost will never really become a permanent space settlement until it is “biologically self-sustaining”. We evolved over millions of years at the bottom Earth’s gravity well. How will amniotic fluid, changes in cell growth, fetal development and human embryos be affected during gestation under lower gravity conditions on the Moon or Mars? There are already indications that problems will arise during mammalian gestation, at least in microgravity as experienced aboard the ISS.

To answer these questions, Joe Carroll suggests the establishment of a crewed artificial gravity research facility in LEO which he described last month in an article in The Space Review. He proposes a Moon-Mars dumbbell with nodes spinning at different rates to simulate gravity on both the Moon and Mars, which covers most of the planetary bodies in the solar system where settlements would be established if not in free space. The facility could be launched and tended by SpaceX’s Starship once the spacecraft is flight worthy in the next few years in parallel with Elon Musk’s plans to establish an outpost on Mars. Musk may even want to fund this facility to inform his long term plans for communities on Mars. If his goal is for the humanity to become a multiplanetary species, surely will want to know if his settlers can have children.

Carroll’s design connects the Moon and Mars modules with radial structures called “airbeams” which will allow crew to access the variable gravity nodes in a shirtsleeve environment. The inflatable members are composed of polymer fiber fabric which can be easily folded for storage in the Starship payload bay. Crews would be initially launched aboard Dragon until the Starship is human rated.

“Eventually, rotating free-space settlements will get massive enough to use other shapes, but dumbbells plus airbeams seem like the key to useful early ones.”

The paper addresses details on key operating concepts, docking procedures, emergency protocols, and the implications for long term settlement in the solar system.

There may even be a market for orbital tourism to experience lower gravity that could make funding for the facility attractive to space venture capitalists, especially if it is located in an equatorial orbit shielded from ionizing radiation by the Earth’s magnetic fields. As the technology matures, older tourists may even want to retire in orbital communities that offer the advantage of lower gravity as their bodies become frail in their golden years.

Humankind’s expansion out into the solar system depends on where we can survive and thrive in a healthy environment. If ethical clinical studies on lower mammals in a Moon/Mars dumbbell clears the way for a healthy life in lunar gravity then we can expand out to the six largest moons including our own plus Mars. If the data shows we need at least Mars gravity, then the Red Planet or even Mercury could be potential sites for permanent settlement. But if nothing below Earth normal gravity is tolerable, especially for mammalian gestation, it may be necessary to build ever larger rotating O’Neillian free space settlements to expand civilization across the solar system. There are vast resources and virtually unlimited energy if we need to do that. But it will take considerable time and careful planning to establish the vast infrastructure needed to build these settlements. If human physiology is constrained by Earth’s gravity then space settlers will want to know this information soon so that the planning process can be integrated into space development activities about to unfold on the Moon and beyond. If Musk finds out that Mars inhabitants cannot have children and wants to establish permanent communities beyond Earth, would he change course and switch to O’Neillian free space settlements?

“If we do need sustained gravity at levels higher than that of Mars, it seems easier to develop sustainable rotating settlements than to terraform any near-1g planet.”

Listen to Joe Carroll answer my questions about his Moon/Mars dumbbell facility from earlier this month on this archived episode of The Space Show.

Interview with Mikhail Shubov: Guided self replicating factories, orbital fuel depots, hydrogen production on Mars and other visions for space settlement

Vintage 1980 artist depiction of a self replicating factory on the Moon. Credits: NASA

Earlier this year SSP covered self replicating factories for space settlement. An innovative paper on this topic with a simpler approach was submitted by Mikhail Shubov to ArXiv.org in August that shows how to accelerate efforts in this area.

A fully autonomous self replicating factory in space requires significant advancements in artificial intelligence, robotics, and other fields. Such facilities are mainly theoretical at this point and may not be feasible for many decades. But if humans could “guide” the operation remotely via computer control, a colony on the Moon could be started relatively soon.  This could be the proving ground for establishing such facilities on other worlds which Shubov believes could be set up on Mercury, Mars and in the Asteroid Belt eventually leading to exponential growth allowing humanity to expand out into the solar system and beyond.  He suggests that rather then using the usual definition of self-replication in which a factory would make a duplicate copy of itself, until this capability is realized, a better figure of merit would be the “doubling time”. This is how long it takes to double the facility’s mass, energy production, and machine production.

I reached out to Dr. Shubov about this article and discovered that he has been busy with a variety of scholarly papers on several technologies needed for space settlement. He agreed to a wide ranging interview via email about these topics and his vision of our future in space.

SSP: Thank you Dr. Shubov for taking the time for this interview.  With respect to your work on Guided Self Replicating Factories (GSRF), there are already companies developing semiautonomous robots for in situ resource utilization on other worlds.   OffWorld, Inc. states that “We envision millions of smart robots working under human supervision on and offworld, turning the inner solar system into a better, gentler, greener place for life and civilization.”  Their business model is focused on developing a robotics platform for mining and construction on Earth, then leveraging the technology for use in space.  Do you think this is a good approach to get started?

MS: Thank you Mr. John Jossy for taking interest in my work!

In my opinion, remotely guided robots will be very effective for construction of a colony on the Moon. These robots could be guided by thousands of remote operators on Earth. They would be linked to Earth’s Internet via Starlink which is already being deployed by Elon Musk via SpaceX. Starlink will consist of thousands of satellites linked by lasers and providing broadband Internet on Earth. About 1,646 satellites are already orbiting the Earth.

Hopefully, it would be possible to produce [an] Earth-Moon Internet Connection of about a Terabit per second. That would enable people on Earth to remotely operate hundreds of thousands of robots.

Using these robots on Asteroids and other planets of Solar System will be much more difficult due to low bandwidth and high delay of communication. For example, latency of communication between Earth and Mars is 4 to 21 minutes.

SSP: Obviously, establishing outposts on other worlds where astronauts could teleoperate robots to build a GSRF would eliminate the latency problem, which you address in your paper.

You’ve envisioned four elements of a GSRF: an electric power plant, a material production system (ore mining, beneficiation, smelting), an assembly system in which factory parts are shaped and fabricated, and a space transportation system.  With respect to the space transportation system you cover both launch vehicles and in-space propulsion systems.  The space transportation element of a GSRF, although vital for its implementation, seems to be an external part of the system.  In fact, you stated that “Initially, spaceships will be built on Earth. Fuel for refueling spaceships will be produced in space colonies from the beginning.”  So, when calculating the doubling time of a GSRF, we are not including the production of space transportation systems, correct?

MS: In my opinion, [the] space transportation system may become part of GSRF at later stages of development. How soon space transportation becomes a part of GSRF depends on the speed of development of different technologies.

If inexpensive space launch from Earth becomes available, then there will be less reliance on self-replication and more reliance on transportation of materials from Earth. In this case, space transportation system will not be part of GSRF for a long time.

If rapid growth of a Space Colony by utilization of in situ resources is possible, then many elements of space transportation system would be produced at the colony. In this case, [the] space transportation system will become a part of GSRF relatively soon.

SSP: You suggest that an important product produced by a GSRF in the Asteroid Belt would be platinum group metals to be delivered to Earth, and that they would help finance expansion of space colonization.  Some space resource experts, including John C. Lewis, believe that “…there is so vast a supply of platinum-group elements in the NEA [Near Earth Asteroids] … that exploiting even a tiny fraction of them would cause the market value to crash, bringing to an end the economic incentive to mine and import them.”  Some suggest the market for these precious metals may be in space not on Earth.  When you say “delivered to Earth” what markets were you envisioning to generate the profits needed to finance the GSRF?

MS: In my opinion the main applications of platinum group metals would be in industry. First, PGM are very important as chemical reaction catalysts. In particular, platinum is used in hydrogen fuel cells and iridium is a catalyst in electrolytic cells. It is likely that demand for platinum, iridium and other PGM will grow along with hydrogen economy. Second, platinum and palladium is used in glass fiber production.

Third, Iridium-coated rhenium rocket thrusters have outstanding performance and reusability. Rhenium is also used in jet engines. These thrusters will also provide a market for iridium and rhenium metals.

SSP: As the need for PGM grows exponentially in the future, especially with energy and battery production needs on Earth in the near future, the environmental impacts of mining these materials on Earth may be another reason to source these materials off world.

Mining water to produce hydrogen for rocket fuel is a theme throughout your writings.  In a paper submitted to the arXix.org server last month entitled Feasibility Study For Hydrogen Producing Colony on Mars, you propose that a technologically mature Martian factory could produce and deliver at least 1 million tons of liquid hydrogen per year to Low Earth Orbit.  Does placing a hydrogen production facility on Mars for fuel used in near-Earth space make sense from a delta-v perspective?  You acknowledge that initially it will be cheaper and easier to access the Moon’s polar ice to produce hydrogen.  But in the long term, Near Earth Asteroids (NEA) or even the Asteroid Belt are easier to access and they include CI Group carbonaceous chondrites which contain a high percentage (22%) of water.  Can you reconcile the economics of sourcing hydrogen on Mars over NEAs?

MS: Delivery of Martian hydrogen into the vicinity of Earth may be necessary only when the space transportation technology is relatively mature. In particular, as I mention in my work, Lunar ice caps contain between 48 million and 73 million tons of easily accessible hydrogen. Until at least 16 million tons of Lunar hydrogen is used, hydrogen from other sources would not be needed.

As I calculate in my work, delta-v for transporting hydrogen from Low Mars Orbit to LEO is 3.5 km/s accomplished by rocket engines plus about 3.2 km/s accomplished by aerobreaking. This would be economic if vast amounts of electric energy will be produced on Mars easier than on asteroids. An important and renewable resource on Mars is the heat sink in the form of dry ice. This may enable production of vast amounts of electric energy by nuclear power plants.

Even if delivery of hydrogen from Low Mars Orbit to Earth turns out to be economically infeasible, hydrogen depots in near-Mars deep space would still play a very important role in transportation to and from Asteroid Belt as well as [the] Outer Solar System.

SSP: Your first choice of a power source for the colony on Mars is an innovative heat engine utilizing dry ice harvested from the vast cold reservoirs at the planet’s polar caps. You suggest that the initial heat source for this sublimation engine be a nuclear reactor. Why not simply use the nuclear reactor to produce electricity? Nuclear reactors coupled to high efficiency Stirling engines for electricity generation like NASA’s Kilopower project have very high power density per unit weight and the technology will be relatively mature soon. Your second choices are solar and wind which are not as reliable as a nuclear power source, especially with reduced solar flux at Mars’s orbit and the problem caused by dust in the atmosphere. Why was a more mature nuclear power technology for direct electricity production not considered?

MS: Thank you.  As I understand now, a regular nuclear reactor with a heat engine using water or ammonia as a working fluid is the best choice for energy production on Mars.  Dry ice should only be used as a heat sink and not as working fluid.  Given the very low temperature and ambient pressure of Martian dry ice, it is likely that power plants will have thermal efficiency of at least 50%.

Almost all components of Martian power stations can be manufactured from in situ resources.  Only the reactors themselves and the nuclear fuel will have to be delivered from Earth.

SSP: A booming space transportation economy will need cryogenic fuel depots to store hydrogen for rocket fuel in strategic locations throughout the inner solar system.  You’ve got this covered in your recent paper Hydrogen Fuel Depot in Space.  Some start ups like Orbit Fab have already started work in this area, albeit on a smaller scale, and United Launch Alliance integrated cryogenic storage into their Cislunar-1000 plans a few years back, but this initiative seems to have slowed down due to delays in ULA’s next generation Vulcan launch vehicle.  In this paper you calculate the required energy to refrigerate hydrogen in one smaller (400 tons) and another larger (40,000 tons) depot.  In both cases, a sun shield is required to block sunlight to prevent boil off.  You don’t mention the method of power generation to provide energy for the refrigeration units.  Could the sun shield have a dual use function by incorporating photovoltaic solar cells on the sun facing side to generate electricity to power the refrigeration system?

Diagram depicting a cryogenic liquid hydrogen storage depot with 40,000 ton capacity. Credits: Mikhail Shubov

MS: Power for the refrigeration system will be provided by an array of solar cells placed on the sun shield.  As I mention in my work, the 400 ton depot requires 80 kW electric power for the refrigeration system, while the 40,000 ton depot requires 840 kW electric power.  This power can be easily provided by photovoltaic arrays.

SSP: SpaceX has proven what was once believed impossible: that rockets could be reused and that turnaround times and reliability could approach airline type operations.  Although we are not there yet, costs continue to come down.  In your paper entitled Feasibility Study For Multiply Reusable Space Launch System you calculate that with your proposed system in which the first two stages are reusable and the third stage engine can be returned from orbit, launch costs could be reduced to $300/kg.  Musk is claiming that with the projected long term flight cadence, eventually Starship costs could be as low as $10/kg.  Even if he is off by a factor of 10 that is still lower than your figure.  What advantages does your system offer over Starship? 

MS: The main advantage of the Multiply Reusable Space Launch System is the relatively light load placed on each stage. As I mention on p. 10, the first stage has delta-v of 2.6 km/s and the second stage has delta-v of 1.85 km/s. The engines have high fuel to oxidizer ratio and a low combustion chamber temperature of 2,100oC. These relatively light loads on the rocket airframes and engines should make these rockets multiply reusable similar to airliners. The launch system should be able to perform about 300 space deliveries per year.

Hopefully Elon Musk would succeed [in] reducing launch costs to at least $100 per kg. Unfortunately, many previous attempts at drastic reduction of launch costs did not succeed. Hence, we may not be sure of Starship’s success yet.

SSP: You state in several of your papers that:

“A civilization encompassing the whole Solar System would be able to support a population of 10 quadrillion people at material living standards vastly superior to those in USA 2020. Colonization of the Solar System will be an extraordinary important step for Humankind.”

Why do you think that colonization of the solar system is important for humanity and when do you think the first permanent settlement will be established on the Moon or in free space?  Here I use the National Space Society’s definition of a space settlement:

“A space settlement” refers to a habitation in space or on a celestial body where families live on a permanent basis, and that engages in commercial activity which enables the settlement to grow over time, with the goal of becoming economically and biologically self-sustaining as a part of a larger network of space settlements. “Space settlement” refers to the creation of that larger network of space settlements.

MS: In my opinion colonization of Solar System will bring unlimited resources and material prosperity to Humankind.   The human population itself will be able to grow by the factor of a million without putting a strain on the available resources.

As for the time-frame of establishment of human settlements on the Moon and outer space, I have both optimistic and pessimistic thoughts.  On one hand, Humankind already possesses technology needed to establish rapidly growing space settlements.  This means that Solar System colonization can start at any time. On the other hand, such technology already existed in 1970s.  This technology is discussed in Gerard K. O’Neill’s 1976 book “The High Frontier: Human Colonies in Space”.  Thus, space colonization can be indefinitely delayed by the lack of political will.  Hopefully space colonization will start sooner rather then later.

Credits: Gerard K. O’Neill / Space Studies Institute Press

Saving Earth and opening the solar system with the nuclear rocket

The NERVA solid core nuclear rocket engine. Credits: NASA

James Dewar believes it is time to reconsider the solid core nuclear thermal rocket, like what was developed in the 1960s under the NASA’s Nuclear Engine for Rocket Vehicle Application (NERVA) Project, as a high thrust cargo vehicle for opening up the solar system and for solving problems here on Earth. A tall order, as he explained in his appearance on The Space Show (TSS) October 26, because nuclear propulsion within the atmosphere and close to the Earth was taken off the table by NASA over 60 years ago and research on nuclear rockets was put on ice after 1973 until recently. Dewar worked on nuclear policy at the Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy. He has documented his views in a paper linked on TSS blog.

What is old could be new again. NERVA had a very light high power solid core reactor with Uranium 235 fuel in a graphite matrix creating nuclear fission to heat hydrogen to produce rocket thrust. The specific impulse (efficiency in conversion of fuel to thrust) of the first iteration of NERVA was about 825 seconds, or almost twice that of chemical rockets. More efficient versions were on the drawing board. The compact design (35×52-inch core) lends itself to low development costs and would be inexpensive to fabricate and operate. It has the potential to lower launch costs significantly and research could pick up where it left off nearly 50 years ago.

So why is NASA announcing development of new nuclear thermal propulsion systems for missions to Mars in the distant future? The reactor cores like those used in Project NERVA are known technologies that can it be adapted for other useful applications and it can be done safely on Earth. There could be a large niche market for energy production in remote rural areas such as Alaska or Canada, or supplementing base load utilities during power disruptions due to severe weather events. With their high operating temperatures, these reactors can replace fossil fuel power generation for manufacturing industries that require process heat such as steel/aluminum or chemical production, which cannot be powered efficiently by wind or solar energy. There may also be a cost advantage and environmental benefit to replacing carbon based fuels for powering maritime oceangoing vessels.

“Even the Greens may support it…What if a reestablished program included making a nuclear propelled 1000-foot tanker sized skimmer to rid the oceans of plastic?”

Additionally, a nuclear reactor of this type could service manufacturing centers in both space and on Earth. It could inexpensively launch satellites and provide power for environmental and solar weather stations to monitor and protect Earth’s health. Dewar even thinks that the solid core nuclear reactor could be used to address the growing global problem of industrial waste by melting it down to its chemical constituents and then separating out commercially valuable components from the actual waste prior to permanent disposal. The low launch costs of the nuclear rocket may actually make disposal of waste off Earth economically feasible. Whole clean industries could spring up around these process centers. So this type of reactor could address many national goals and objectives rather than just crewed missions to Mars or deep space.

But what about the elephant in the room? Safety, radiation and fear of all things “nuclear”? Would the public support ground based testing if a NERVA type solid core nuclear thermal rocket program were restarted? Dewar covers this in detail in his book The Nuclear Rocket, Making Our Planet Green, Peaceful and Prosperous. As reported by the EPA in 1974, “…It is concluded that off-site exposures or doses from nuclear rocket engine tests at [the] NRDS [Nuclear Rocket Development Station] have been below applicable guides.”

What about regular launches of a nuclear rocket in the Earth’s atmosphere? First, the launch range proposed would be in an isolated ocean area over water to eliminate the possibility of failure or impact in populated regions. Second, the nuclear core would be enclosed in a reentry vehicle type cocoon for safe recovery in the event of an accident. Third, the nuclear engine is envisioned as an upper stage and would not be “turned on” until boosted high in the stratosphere, thus emission of gamma rays and neutrons from the fission reaction would not be any different then the radiation already impinging on our atmosphere from cosmic and solar radiation.

“…the best way to banish fear is for citizens to profit from the program.”

There is also the potential for the U.S. and its citizens to profit from this venture. Dewar suggests a governance framework for creating a public/private corporation in which the private sector is in charge, but leases assets from NASA and DOE. The government would support the venture via isolated testing sites, providing technical advice, supplying the uranium fuel and security to guard against potential nuclear proliferation. The public/private partnership would be set up to incentivize citizen participation through stock purchases and distribution of dividends in addition to providing jobs and funding the missions.

“Another source of funding would exist beyond the government or private billionaires: the public now has access”

Dewar concludes his paper with an inspirational statement: “…a new space program emerges based on science, not emotion, one that maximizes the technology for terrestrial applications, one that neuters the rocket equations and democratizes the space program, allowing citizens to participate and profit, and one that ever integrates Earth into the Solar System.”