A brief history of starship pioneering

The photon rocket on an interstellar voyage exploring exoplanets. Credit: © David A. Hardy / www.astroart.org

Eventually we will get to the stars. It may not happen in our lifetime but its going to happen some day. Adam Crowl has provided a nice historical review of the interstellar pioneers from the last century that worked out the physics of the starships that will take us there. He does this in a chapter he wrote for James and Gregory Benford’s ground-breaking anthology Starship Century which was based on the findings of the 100‐Year Starship Symposium seeded by a DARPA solicitation and executed by NASA back in 2011.

Crowl begins the story with the early days of rocketry pioneered by Tsiolkovsky determining the rocket equation and Goddard and others experimenting with liquid fueled rockets. Tsiolkovsky was the first to come up with the idea of a generation starship (sometimes referred to as a worldship) when he realized that existing chemical propellants would be insufficient to fuel a space ship for interstellar travel.

Artist depiction of an interstellar worldship. Credits: Michel Lamontagne / Principium, Issue 32, February 2021

More practical interstellar craft don’t come on the scene until after WWII when advanced propulsion concepts really take off. The possibility of harnessing light to “push” a rocket, feasible because photons carry momentum, first appeared in science fiction. As it turned out, physicists realized that to generate the needed thrust with light pressure would require enormous amounts of energy, the waste heat of which would vaporized the vessel. Nevertheless, the photon rocket was still being discussed as late as 1972 when I first saw the rendering at the top of this post by David Hardy in the book he coauthored with Patrick Moore called Challenge of the Stars. Fast forward to today, Dr. Young K. Bae’s Photonic Laser Thruster shows great promise if it can be scaled up for interstellar travel.

Diagram depicting the layout of the Photonic Laser Thruster. Credits: Young K. Bae, Ph.D.

In the latter half of the last century, as the physics of nuclear energy and laser technology progressed, we see a proliferation of many concepts for star travel, including various forms of fusion rockets, laser sails, antimatter propulsion and my personal favorite, the Bussard ramjet. Conceived by the physicist Robert Bussard in 1960, the ship eliminates the need to carry fuel by collecting hydrogen from the interstellar medium using a magnetic field as a ram scoop and compresses the gas to fusion temperatures to create thrust. Crowl summarizes some of the physical limitations of the original concept and discusses several physicist’s alternative designs to address them.

One concept that didn’t make it into Crowl’s piece was developed recently by Leif Holmlid and Sindre Zeiner-Gundersen. Called the laser induced annihilation drive, it uses a pulsed laser to initiate “antimatter-like” annihilation reactions in hydrogen fuel producing high velocity K meson elementary particles at relativistic speeds to generate thrust.

Diagram of a laser-induced annihilation generator for space propulsion. Credit: Leif Holmlid and Sindre Zeiner-Gundersen, Acta Astronautica 23 May 2020

When I asked Crowl if he had any updates to some of the starship propulsion concepts he sent me an article penned by an unknown author for Medium that came up with another alternative to address the limitations of the original Bussard Ramjet. The author, who goes by the pseudonym “deepfuturetech”, reminds us like Crowl discussed in his piece, that the cross section ( i.e. the probability that a given atomic nucleus or subatomic particle will undergo a nuclear reaction in relation to the species of the incident particle) of the Bussard ramjet proton-proton fusion reaction is too low to be useful. Deepfuturetech proposes a different fusion mechanism via (p,n) reactions which involve a nucleus capturing a proton and subsequently emitting a neutron. These type of reactions have higher cross sections and could be tested in reactors in the near future. Further analysis is needed to confirm whether these reactions could produce neutrons at sufficiently low energy cost to enable profitable hydrogen fusion.

Artist depiction of a Bussard ramjet. Credits: NASA

Incidentally, Crowl talked about many of these starship concepts at a subsequent Starship Century Symposium held in 2013 by the Arthur C. Clarke Center for Human Imagination in collaboration with the Benford brothers who shared the highlights from their Starship Century anthology summarizing scientific results from the 100‐Year Starship project. You can also get a “Deeper Future View” of his independent research on interesting items not typically covered by the mainstream science media at his blog Crowlspace.

Worldships for interstellar space settlement

Image of an interstellar Worldship. Credits: Michel Lamontagne / Principium, Issue 32, February 2021

The feasibility of Worldships has been covered previously on SSP by The Initiative and Institute for Interstellar Studies via Principium. A new article by Michel Lamontagne on page 29 of the most recent issue examines the concept from a perspective of an interplanetary society which has harnessed fusion energy and life support systems for space settlements, while reducing costs through self replicating factories.

Such a starship is envisioned to use a deutrium/He3 fusion drive to accelerate to 1% of the speed of light completing a journey to Alpha Centauri in about 430 years. The author envisions a fleet of 3 or 4 (or more) Worldships housing about 1000 passengers each in rotating torus habitats 1,200m in diameter with artificial gravity.

Image of the interior of a worldship habitat. Credits: Michel Lamontagne / Principium, Issue 32, February 2021

Self replication is the key to this architecture. Lamontage explains: “If fully self replicating systems exist at the departure of the mission, Sprinter starships carrying self replicating machines can be sent at the same time as the Worldship flotilla departs. The Sprinters will arrive centuries before the Worldships, and the self replicating machines will have ample time to create multiple habitats, and perhaps begin to seed them with simple life forms.”

Lamontage cautions that the needed AI technology and practical self replicating machines may be more difficult to develop than predicted. The Worldship habitat ecosystems may encounter instabilities over centuries-long journeys leading to eventual breakdown of life support systems. Finally, rapid technological advances may lead to advanced propulsion schemes or other opportunities that would make a Worldship obsolete before getting started.

The feasability of interstellar worldships

Artist’s impression of a fleet of worldships on an interstellar voyage. Credits: Michel LaMontage / Initiative for Interstellar Studies

In the August 2020 Issue of Principium, Richard Soilleux summarizes current research on the feasibility of interstellar voyages via multi-generation worldships. The starting point is assumed to be free flying orbital settlements as envisioned by Gerard K. O’Neill that will eventually be tooling around the solar system way before a trip to the stars would be possible. The baseline for the analysis was an orbital space settlement called Avalon, the result of a complex study by the British Interplanetary Society called the BIS Space Project which took a fresh look at O’Neill’s smallest habitat Island 1, a settlement that would house 10,000 inhabitants.

Artist’s impression of the Avalon orbital settlement. Credits: Mark Hempsell / Initiative for Interstellar Studies

Much of the technology needed for an interplanetary ship like Avalon could be leveraged for an interstellar craft, but there are several challenges for permanent occupation over many generations as would be needed for a trip to the stars. For example, the ships would obviously have to be much more robust and reliable. Design lifetimes of 1000 years, as what is estimated to be needed, would require rigorous maintenance and repair schedules. Major periodic replacement of damaged or worn components and obsolete parts would also be required.

Soilleux’s analysis breaks down the key features of the settlement in terms of technology readiness and extrapolates to the interstellar case. One key element of the design is the environmental control and life support system (ECLSS). Avalon’s ECLSS does not need to be fully closed when voyages are limited to within the solar system as there are plenty of resources to replace nutrients and materials that cannot be recycled. Interstellar voyages are another matter all together and the study found that the recycling rate needs to be better than 90% for at least 36% of a material to remain useable after 100 years. This ratio would have to be significantly higher for an interstellar journey, the duration of which could be an order of magnitude longer. Soilleux concludes that “Recycling must therefore be managed carefully, and a detailed inventory maintained of all materials and nutrients wherever they are in the system.”

ECLSS technology is clearly one of the gating items for space settlement in the solar system and for journeys beyond. More information and research can be found in the Life Support Section.