The role of space ethics on the high frontier

Artist concept of a cutaway view of the Stanford Torus free space settlement. Credits: Rick Guidice / NASA

Can humanity explore and develop space responsibly by learning from some of the mistakes made throughout history while settling new lands? In an article called “To Boldly Go (Responsibly)” on LinkedIn, CEO of Trans Astronautica Corporation Joel Sercel provides a vision for how we should conscientiously manage space settlement in a manner that respects human rights and the rule of law, but also maintains stewardship of the space environment.

“Through space settlement, we have a chance to show that humanity has learned from history and is evolving morally and culturally”

Sercel warns of the “Elysium effect”. In the words of Rick Tumlinson, who coined the term in an article on Space.com, “…as entrepreneurs like Elon Musk, Jeff Bezos and Richard Branson spend billions to support a human breakout into space, there is a backlash building that holds these projects as icons of extravagance.” Ironically, these New Space pioneers actually have the opposite goals of lowering the cost of access to space for average citizens and preserving the Earth’s environment by moving “dirty” industries outside it’s biosphere.

Public space agencies and private space companies can help open the high frontier responsibility through cooperation on development of common standards and international agreements in accordance with the Outer Space Treaty. Sercel believes that an urgent need in this area would be establishment of salvage rights for defunct satellites and dormant orbital debris like spent upper stages which under the OST are the responsibility of the nation that launched the payloads.

“That’s a legal impediment for companies developing satellites to clean up orbital debris and firms eager to recycle abandoned antennas and rocket bodies.”

Some work in the area of orbital debris mitigation has already been started by the Space Safety Coalition, an ad hoc coalition of companies, organizations, and other government and industry stakeholders, through establishment of best practices and standardization for space operations. And just last month the Orbital Sustainability Act of 2022 was introduced in the U.S. Senate that will “require the development of uniform orbital debris standard practices in order to support a safe and sustainable orbital environment.”

Good progress on interagency cooperation in space has also been made with the creation of the Artemis Accords, Principles for a Safe, Peaceful, and Prosperous Future. Signed by seven nations thus far, the agreement provides a legal framework in compliance with the OST for humans returning to the Moon and establishing commercial mining rights.

Sercel thinks that before establishing a permanent human presence on Mars we should first thoroughly explore the planet robotically for signs of life to ensure that we do not disrupt any indigenous organisms if a biosphere is found to be present there.

Another example of space ethics, discussed on SSP in previous posts, is determination of the gravity prescription, especially the human gestation component. The answer to this critical factor may drive the decision on where to establish permanent long term settlements so colonists can raise families. It may turn out that having children in less than 1G may not be biologically possible and therefor, for ethical reasons, may change the long term strategy for human expansion in the solar system favoring free space settlements with Earth normal artificial gravity over surface settlements. Sercel believes that determination of the gravity Rx should be a high priority and suggested on The Space Show recently a roadmap of mammalian clinical reproduction studies starting with rodent animal models producing offspring over multiple generations progressing to primates and then, only if these are successful, initiating limited human experiments. Such studies would prevent ethical issues that may arise from birth defects or health problems during pregnancy because we don’t know how lower gravity would effect embryos during gestation.

Dylan Taylor of Voyager Space Holdings has advocated for a sustainable approach to space commercial activities to ensure “…that all humanity can continue to use outer space for peaceful purposes and socioeconomic benefit now and in the long term. This will require international cooperation, discussion, and agreements designed to ensure that outer space is safe, secure and peaceful.”

Sercel is calling for the National Space Council “…to coordinate private organizations to include think tanks, advocacy groups, and the science community to work together to define the field of space ethics…to guide the development of laws and regulations that will ensure the rapid and peaceful exploration, development and settlement of space.”

Seeding asteroids with fungi for space habitat soil

Illustration of a process for making soil for space habitats by seeding asteroids with fungi. Credits: Jane Shevtsov

The asteroid belt will be a treasure trove of raw material for space settlers to use to build their habitats, especially the O’Neill-type rotating cylinder variety. To support plentiful green spaces and robust agricultural systems envisioned for these large scale settlements, an abundant source of fertile soil will be needed. But how could the enormous cost of bringing soil from Earth be avoided? An innovative in situ method under development by Jane Shevtsov of Trans Astronautica Corporation may provide the answer. In a just awarded NASA NIAC Phase 1 grant proposal, she explains that the envisaged soil-making process would be a “…natural fit for asteroid mining operations targeting volatiles, as they use carbonaceous asteroids and leave behind leftover regolith that should make a suitable parent material for soil production.”

The Phase 1 research will be broken down into two tasks. In Task 1 the leading fungal species will be identified for experimentation on asteroid material simulant followed by determination of soil production rates of the fungi along with the effects of environmental factors such as temperature, humidity and oxygen concentration. Task 2 will explore various methods of breaking down asteroid regolith by the chosen fungi in the space environment optimizing for productivity and costs, with the ultimate goal of determining the size of a payload to support a reference mission habitat within a feasible timeframe.

In the above diagram, there are hints that the concept may use an inflatable enclosure around the asteroid to retain volatiles, reminiscent of some of the applications of the SHEPHERD asteroid capture architecture previously covered by SSP, in which a gas atmosphere within the enclosure can keep water in a liquid phase so that the asteroid provides a substrate for introduced biological agents for the generation of foodstuffs and other consumables.

Trans Astronautica has been working on their own asteroid capture method which may come in handy when used in combination with the output of Ms. Shevtsov’s project.

Power towers at the Peaks of Eternal Light

Peaks of Eternal Light at the lunar south pole annotated with crater labels. Mosaic of 40 images taken by the ESA SMART-1 spacecraft 2005/2006. Area covers 500 x 150 km. Credits: ESA/SMART-1/AMIE camera team; M. Ellouzi/B. Foing, CC BY-SA 3.0 IGO

As most space settlement enthusiasts know, the Peaks of Eternal Light on the rims of craters in the lunar polar regions hold much promise as the ideal location to place collectors for solar energy to power ice mining operations. At the south pole in particular, these peaks lie within just a few kilometers of large frozen water deposits in the permanently dark shallows. But how much solar power is available? Companies such as Trans Astronautica Corporation will want to know so they can inform plans for their Sun Flower™ collector invention as part of a Lunar Polar Mining Outpost.

In a paper posted this month on the pre-print server arXiv.org, a team of researchers at Harvard University and Technische Universität Berlin present the results of a study to answer this question. Using data from high resolution maps of solar illumination on the ridges of Shackleton crater and others, they determined the total available power from collector towers of various heights if they were placed at these locations.

The study found that the power available depends heavily on the height of the panels above the local surface but could be substantial, from a few megawatts for towers of heights less than 100m up to the gigawatt range for towers of 500m or more. This is sufficient power for mining several thousand tons of water per year from Shackleton crater.

2020 NIAC Symposium showcases cutting edge technology for space development

Illustration of SPEAR (Swarm Probe Enabling ATEG Reactor), an affordable nuclear electric propulsion spacecraft using a custom designed fission reactor. Credits: Troy Howe, Howe Industries LLC

The 2020 NASA Innovative Advanced Concepts (NIAC) Symposium just rapped up it’s virtual event. The NAIC Program supports early studies of visionary concepts in space and aeronautics that develop and assess revolutionary, yet credible, aerospace architecture, mission, and system concepts. These studies showcase ideas that will enable far-term capabilities, and spawn exciting innovations to radically improve aerospace exploration, science, and operations.

There were a wealth of new ideas presented at this year’s meeting with Phase I, II, and III posters and presentations available as PDFs on the NAIC Symposium website. To give you a taste, above is an illustration of Howe Industries’ Phase II concept for a small, affordable nuclear electric propulsion spacecraft using a custom designed fission reactor with advanced thermoelectric generators (ATEGs). The innovative design would allow private entities, universities, or other interested parties to carry out missions across the solar system at relatively low cost.

Another favorite of ours was Trans Astronautica’s Mini Bee asteroid capture concept in which they will deploy, then chase down and “swallow” a test object in LEO as a precursor to an asteroid mining mission.

Illustration of Trans Astronautica Corporation’s Mini Bee spacecraft chasing down and capturing an artificial asteroid in LEO. Credits: Joel Sercel / Trans Astronautica Corporation

Some of these NIAC grants have already been covered by SSP such as Phil Metzger’s Aqua Factorem lunar water harvesting process, Masten’s instant lunar landing pad and Trans Astronautica Corporation’s Lunar Polar Propellant Mining Outpost.

We leave you with JPL’s Enceladus Vent Explorer

Illustration of Enceladus Vent Explorer concept. Credits: Masahiro (Hiro) Ono / Jet Propulsion Laboratory

Breakthrough mission architecture for mining lunar polar ice

Joel Sercel of Trans Astronautica Corporation was recently awarded a Phase II NIAC grant for a Lunar Polar Mining Outpost (LPMO) that promises to greatly reduce the cost of commercializing propellant production on the Moon. The system utilizes two patented innovative concepts for generating power and processing regolith. The first invention is a several meters tall solar reflector tower called a Sun Flower™ to gather sunlight at the permanently illuminated areas near the poles and reflect it down to megawatt level solar arrays near the outpost. The second concept called Radiant Gas Dynamic (RGD) mining combines microwave and infrared radiation to sublimate ice out from the regolith for storage in cryotraps on electric powered rovers. The outpost elements are designed to be delivered to the lunar surface using Blue Origin’s New Glenn rocket and Blue Moon lander.

Sercel states that “…LGMO promises to vastly reduce the cost of establishing and maintaining a sizable lunar polar outpost that can serve first as a field station for NASA astronauts exploring the Moon, and then as the beachhead for American lunar industrialization, starting with fulfilling commercial plans for a lunar hotel for tourists”

Diagram of Lunar Polar Propellant Mining Outpost (LPMO) concept
Credits: Joel Sercel