Curriculum for Astrochemical Engineering

An engineer pondering chemical processes for use in space learned in an advanced postgraduate course in Astrochemical Engineering. Credits: DALL∙E 3

In a paper in the journal Sustainability a global team of researchers has created a two year curriculum to train the next generation of engineers who will design the chemical processes for the new industrial revolution expected to unfold on the high frontier in the next few decades.

Current chemical engineering (ChE) training is not adequate to prepare the next generation of leaders who will guide humanity through the utilization of material resources in space as we expand out into the solar system.

Astrochemical Engineering is a potential new field of study that will adapt ChE to extraterrestrial environments for in situ resource utilization (ISRU) on the Moon, Mars and in the Asteroid Belt, as well as for in-space operations. The body of knowledge suggested in this paper, culminating in Master of Science degree, will provide training to inform the design ISRU equipment, life support systems, the recycling of wastes, and chemical processes adapted for the unique environments of microgravity and space radiation, all under extreme mass and power constraints.

The first year of the program focuses on theory and fundamentals with a core module teaching the physical science of celestial bodies of the solar system, low gravity processes, cryochemistry (extremely low temperature chemistry), and of particular interest, circular systems as applied to environmental control and life support systems (ECLSS) to recycle materials as much as possible. Students have the option to specialize in either process engineering or a more general concentration in space science.

For the process engineering option in year one, students will learn how materials and fluids behave in the extreme cold of space. This will include the types of equipment needed for processes in a vacuum environment including microreactors and heat exchangers, as well as methods for separation and mixing of raw materials.

In the space science specialization, year one will include production of energy and its utilization in space. Applications include solar energy capture and conversion to electricity, nuclear fission/fusion energy, artificial photosynthesis, and the role of energy in life support systems.

In the second year, students learn basic chemical processes for ISRU on other worlds. Processes such as electrolysis for cracking hydrogen and oxygen from water; and the reactions Sabatier, Fischer-Tropsch and Haber-Bosche for production of useful materials.

The second year process engineering specialization focuses on ISRU on the Moon with ice mining, processing regolith and fluid transport under vacuum conditions. Propulsion systems are also covered including methane/oxygen engines, hydrogen logistics, cryogenic propellent handling in space and both nuclear thermal and electric propulsion. Space science specialization in year two covers life support systems and space agriculture.

A design project is required at the end of each year to demonstrate comprehension of the concepts learned in the curriculum, and is split between an individual report and a group project.

Coupled with synthetic geology for unlocking a treasure trove of space materials in the Periodic Table, innovative equipment for ISRU on the drawing board and research on ECLSS, Astrochemical Engineering will be a valuable skill set for the next generation of pioneers at the dawn of the age of space resource utilization.

The Pinwheel Magma Reactor: synthetic geology for ISRU

Image
Conceptual depiction of the Pinwheel Magma Reactor on a planetary surface in the foreground and in free space on a tether as shown in the inset. Credits: Kevin Cannon

How can space settlers harness useful resources that have not been concentrated into ore bodies like what takes place via geologic process on Earth over eons of time? Could we artificially speed up the process using synthetic geology? Kevin Cannon, a planetary geologist at the Colorado School of Mines (CSM), thinks it might be possible to unlock the periodic table in space to access a treasure trove of materials with an invention he calls the Pinwheel Magma Reactor. He has submitted a NASA Innovative Advanced Concepts proposal for the concept. The device is a essentially a centrifuge sitting on a planetary surface with a solar furnace reaction chamber spun at the end of its axis. In space, a free flying system could be connected by tether.

PMR chambers are positioned at the end of the axis of a centrifuge. Credits: Kevin Cannon

In a Twitter thread Cannon sets the table with a basic geology lesson explaining why mining on Earth is so different from what we will need in space. The Earth’s dynamic crustal processes, driven by fluid flow and plate tectonics over millions of years, exhibit a very different geology then that under which the Moon, Mars and asteroids evolved. The critical minerals that could be useful to support life and a thriving economy in space settlements are present in far lower concentrations in space then on Earth.

Current plans for ISRU infrastructure on the Moon and asteroids are only targeting a small set of elements like hydrogen, oxygen, carbon, silicon and iron (below, left).

Illustration of the periodic table showing currently targeted elements for ISRU on the left. On the right, the most mined elements on Earth (colored gold) and critical elements (orange) useful for an advanced society. Credits: Kevin Cannon

But an advanced society expanding out into the solar system would benefit from many critical minerals (above, right) that are not easily accessible because of their far lower concentrations. For example, energy production will need uranium and thorium, energy storage systems require lithium and electronics manufacturing is dependent on rare earths. So how to unlock the periodic table for these critical materials?

If we are to live off the land by harvesting useful materials to build and sustain space settlements we’ll need a totally revolutionary mining process. The PMR was designed with this in mind. The procedure begins by loading unprepared rocks or regolith into the chamber followed by heating via a solar furnace. Next, the chamber is spun up in the centrifuge where super gravity concentrates the desired minerals. Cannon believes that the PMR could also be used to extract water from regolith on the moon or asteroids.

“If hydrated asteroid material or icy regolith are put in at low temperatures, they’ll be separated by super-gravity and can be siphoned off.”

Of course the technology needs to be validated and flight hardware developed to determine if the PMR can be a tool to speed up the geological processes to concentrate useful materials for humans, who can then use them to synthetically propagate life in space. Cannon sums it up:

“Obviously a lot of work to be done to prove out the concept. But I think that a process flow of synthetic geology -> synthetic biology is the way to solve the concentration problem in space and enrich any element we want from the periodic table.”

Check out Cannon’s research page at The Cannon Group . He also blogs on space resources and development at Planetary Intelligence.