Biosphere X, Y and Z: The future of farming in space – guest post by Marshall Martin

Artist’s depiction of a space farm in a 56m radius rotating space settlement. Credits: Bryan Versteeg / Spacehabs.com

Editors Note: This post is a summary of a presentation by Marshall Martin that was accepted by the Mars Society for their conference that took place August 8 – 11th in Seattle, Washington. Marshall was not able to attend but he gave me permission to publish this distillation of his talk. There are minor edits made to the original text with his permission. Marshall is an accomplished Software Engineer with decades of experience managing multiple high tech projects. He has Bachelor’s Degree in Mathematics and Physics from Northwestern Oklahoma State University and an MBA in Management of Information Systems from Oklahoma City University. He is currently retired and farms with his in-laws in Renfrow, Oklahoma. The views expressed by Marshall in this post are his own.

The Earth is a Biosphere supporting life which has evolved and thrived on sunlight as an energy source for more than 3.4 billion years.

Therefore!

You would think a few smart humans could reverse engineer a small biosphere that would allow life to exist in deep space on only sunlight.

Furthermore, eventually the sun will run short of hydrogen and transition into a red giant making the Earth uninhabitable in a few hundred mission years. Long before that time, we need to have moved into biospheres in space growing crops for food. But for now….

The cost of food in space (when launched from Earth) is too high. My Estimates: [1,2]

Launch Vehicle/MissionCost/pound
(USD)
Cost/Person/Day*
(USD)
Space Shuttle to ISS $10,000 $50,000
Falcon 9 to ISS $1134 $5670
Atlas V [3] to Mars (Perseverance[4] Mars Rover) >$100,000 $500,000
2 year mission to Mars based on Atlas V costs >$100,000 $365,000,000
* Assuming average consumption rate of 5 pounds/day

If we assume that the SpaceX Starship will reduce launch costs to Mars by at least two orders of magnitude, the cost/person/day for a two year mission would still exceed $3 million dollars.

Solution: farming in space

Starting with a rough estimate, i.e. a SWAG (Scientific wild-ass guestimate): – A space station farm sized at 1 acre producing 120 bushels per acre of wheat, 60 pounds per bushel, 4 crops per year, yields 28,000 pounds of wheat per year.  Using Falcon 9 launch costs, this produces a crop valued at $31.7M per year.  If your space farm is good for 50 years, the crops would be worth $1.585B when compared to an equivalent amount of food boosted from Earth at current launch costs.

SWAG #2 – I believe a space farm of this size can be built using the von Braun “Wet Workshop” approach applied to a spin gravity space station composed of several Starship upper stages at a projected cost of $513M. More on that later.

Do we know how to build a space farm?    NO! 

So how do we get there?

Biosphere X would be the next generation of ground-based Biospheres.  You may consider the original Biosphere 2[5] as the first prototype.  As an initial SWAG, it was marginally successful.  As the design basis of a working space farm, it is nowhere close.

Image of the iconic Biosphere 2 experiment that attempted two missions, between 1991 and 1994, sealing a team of nine and seven Biospherians, respectively, inside the glass enclosure. The facility is now used for basic research to support the development of computer models that simulate the biological, physical and chemical processes to predict ecosystem stability. Credits: Biosphere 2 / University of Arizona

Biosphere Y will be placed in Equatorial Low Earth Orbit (ELEO) and will be based on the best iteration of Biosphere X.

Biosphere Z will be a radiation hardened version of Biosphere Y for deep space operations.

Key  Metrics:

People per acre is an important metric.  Knowing how many people are going to be on a space station or spaceship will imply the size of the farming operations required. [6]

Labor per acre is important.  It determines how many farm workers are needed to feed the space population (assuming there will be no automation of farm operations).  Note: every American farmer feeds about 100 people.  Obviously, if it takes 11 farmers to support 10 people in the biosphere, that is a failure.  If it takes 2 farmers to support 10 people that implies that 8 workers are available to work on important space projects.  Like building the next biosphere that is bigger and better.

Cost per acre will be the major cost of supporting a person in space.  There will be a huge effort to reduce the cost of space farmland.

Water per acre required to grow the crops.  Since there is a metric for people per acre, the water per acre would include the water in the sewage system.  I would think the water for fish farming would be separate or an option.

Soil per acre is literally the amount of dirt needed in tons.  This gets fun.  Will Biosphere X use hydroponics, aeroponics, light weight dirt, or high quality top-soil?  It could be just standard sandy loam.  The quality of the soil will have a big impact on what crops can be grown, which in turn, has a big impact on People per acre.

Watts per acre is the power required to operate a farm.  Another major cost of food grown in space.  Direct sunlight should be very cheap via windows, at least for biospheres in ELEO. In deep space far removed from the protection of Earth’s magnetic field, radiation would pose a problem for windows unless some sort of angled mirror configuration could be used to reflect sunlight adjacently.  Electricity from solar panels has been proven by ISS.  Power from a small modular nuclear reactors might be a great backup power for the first orbiting biosphere.  Note, diesel fuel would be extremely expensive and emissions would cause pollution to the biosphere in space; that implies, farming would be done using electrical equipment.

Improvements based on the Biosphere 2 experience to make a successful Biosphere X:

  • Updated computers for: better design, data collection, environmental control systems, subsystem module metrics, communication.
  • Oxygen production:  Greenfluidics[7] (algae farm subsystem)
  • Improved windows:  2DPA-1 polycarbonate[8]  vs. ISS windows[9]
  • Robots vs. manual labor.  (and better tools)
  • Soil vs. regolith vs. aeroponics vs. hydroponics vs. ??
  • Improved animal and plant selections

Cost of a Biosphere X compared with other ground-based facilities:

FacilityArea
(Acres)
Cost
(USD)
Biosphere 23.14$150M[12]
Regional Mall5.7$75M [13]
Walmart0.22$2.5M
Biosphere X1.0$10M 
Special building issues – SWAG: $20M

Biosphere X design options:

  • Crops: Wheat, Oats, Barley, Rye, Corn, Rice, Milo, Buckwheat, Potato, …
  • Animals: Fish, Goats, Chickens, Sheep, “Beyond Meat”, cultured meat …
  • Insects: Honeybees, edible Insects, Meal worms, Butterflies, …
  • Humans: I suggest 2 men & 2 women and work up from there.
  • Remote ground support: start big and reduce as fast as possible, goal = zero.

Testing Biosphere X:

Can a team live in the biosphere for two years?  (See Biosphere 2 test which was 2 years, i.e. a round trip to Mars and back)  How much food was produced?  Debug the biosphere.  Make upgrades and repeat the tests.  Calculate Mean Time to Failure (MTTF), Mean Time to Repair (MTTR), system flexibility, cost of operations, farming metrics (see above). etc.

With enough debugging, Biosphere X will become a comfortable habitat for humans of all ages.  This will include old people, children, and perhaps babies.  I think a few babies should be born in a Biosphere X (e.g. a few dozen?) before proceeding to Biosphere Y. Obviously, it may be challenging to find motivated families willing to make the generational commitment for long term testing required to realize this noble goal of space settlement. Alternatively, testing of Biosphere X could be simplified and shortened by skipping having babies, deferring this step to the next stage.

Biosphere Y potential configuration:

Once a reasonably well designed Biosphere X has been tested it will be time to build a Biosphere Y.  This will require figuring out how to launch and build the first one – not easily done! Let’s posit a reasonably feasible design using orbital spacecraft on the near-term horizon namely, the SpaceX Starship. Using nine upper stages with some modifications to provide spin gravity, sufficient volume could be placed in ELEO for a one acre space farm. Here’s one idea on what it would look like:

A central hub which we will call the 0G module will be composed of three Starship upper stages. Since they would not be returning to Earth, they would not need heat shield tiles, the aerodynamic steerage flaps, nor the three landing rockets. Also, there would not be a need for reserve fuel for landing. These weight reductions would allow the engineers to expand Starship and/or make more built-in structure and/or carry more startup supplies.

We will assume the current length of 165 feet with a 30 foot diameter. Three units placed nose-to-tail make 495 feet. But internally there would be 3 workspaces per unit: Oxygen tank, methane tank, and crew cabin. Times three units makes 9 chambers for zero gravity research.

The three units are connected forward and aft by docking hatches. Since the return to Earth engines have been deleted, the header tanks in the nose of Starship (the purpose of which is to offset the weight of the engines) would be eliminated allowing a docking port to be installed in front. In addition, with the 3 landing engines eliminated, there should be room for a tail end docking port. This will allow crew to move between the three Starship units in the 0G hub.

An aside: I am assuming that the nose of the station is always pointing towards the sun. The header tanks in the nose of the first unit could be retained and filled with water to provide radiation shielding to block solar particle events for the trailing units.

The 0G-units will need access ports on each of their sides to allow a pressurized access and structural support tube extending out to the 1G-units located at 100 meters on either side of the hub. This distance is calculated using Theodore W. Hall’s SpinCalc artificial gravity calculator with a spin rate of 3 rpm. There would be three access tubes extending out to connect to each of the 3 Starship 1G units. I assume the standard Starship has an access door which can be modified to connect to the tube.

Conceptual illustration of a possible configuration of an initial Biosphere Y in LEO using modified SpaceX Starship upper stages docked nose to tail. The station spins at 3 rpm around the central 0G hub with the outer modules providing 1G artificial gravity and enough volume for an acre of space farm. Credits – Starship images: SpaceX. Earth image: NASA

One or more standard Starships would deliver supplies and construction materials. They would also collect the three Raptor engines from each modified unit (36 in total) for return to Earth.

I note that the engineering modifications, methods and funding for operations in space to construct Biosphere Y have yet to be determined. However, applying a SWAG for launching the primary hardware to LEO:

This would require 18 starship missions. Using Brian Wang’s estimates of $37M per Starship[21] we get the following cost:

9 Starships times $37M per starship = $333M

18 Starship launches times $10M per launch = $180M

Total SWAG cost: $513M

What’s on the inside?

As mentioned previously, the interior of Biosphere Y will be a Wet Workshop utilizing the empty oxygen and methane tanks in addition to the payload bay volume (roughly 60ft + 39ft + 56ft long, respectively, based on estimates from Wikipedia), for a total length of 155 feet by 30 feet wide for each individual Starship unit.  With six 1G Starship units this amounts to about 657, 000 cubic feet of usable volume for our space farm experiencing normal gravity and its associated support equipment (half that for the 0G hub).

Note: Biosphere Y is designed to be placed in Equatorial Low Earth Orbit (ELEO).  This orbit is below the Van Allen belts where solar particle events and galactic cosmic ray radiation are reasonably low due to Earth’s protective magnetic field.

Since the first Biosphere Y will spin to produce 1G, eventually experiments will need to be performed to determine the complete Gravity Prescription[12, 13]: 1/2g, 1/3g, 1/6g and maybe lower.  You would think this would be required before trying to establish a permanent colony on the Moon and/or Mars in which children will be born.  This will probably require several iterations of Biosphere Y space stations to fine tune the optimum mix of plants, animals, and bio-systems.

What other things can be done with a Biosphere Y?

  • Replace International Space Station
  • Astronomy
  • Space Force bases in orbit
  • Repair satellites
  • Fueling station
  • De-orbit space junk
  • Assemble much larger satellites from kits (cuts cost)
  • Lunar material processing station
  • Families including children and babies[13] in space

Biosphere Z:

Once Biosphere Y is proven, it is ready to be radiation hardened to make a Biosphere Z.  I assume the radiation hardening material would come from lunar regolith.  It is much cheaper than launching a lot of radiation shielding off Earth.

Biosphere Z will be able to do everything that Biosphere Y can do – just further away from Earth.

After an appropriate shake-down cruise (2 years orbiting the Moon, Lagrange 1, and/or Lagrange 2), a Biosphere Z design should be ready to go to Mars. Note several problems will have been solved to ensure positive outcomes for such a journey:
• What does the crew do while going to Mars — farming.
• Building Mars modules to land on Mars
• The crew has been trained and tested for long endurance flights
• Other typical Biosphere Y, Z activities

Biosphere S  —  Major Milestone:

Eventually a biosphere will be manufactured using only space material, thus the designation Biosphere S.  Regolith can be processed into dirt.  Most metals will come from the Moon and/or Mars surface material.  Oxygen is a byproduct of smelting the metals.  Carbon and Oxygen can come from the Martian atmosphere.  Water can be obtained from ice in permanently shadowed regions at the Moon’s poles or from water bearing asteroids.  The first Biosphere S units will probably get Nitrogen from Mars.  Later units could get nitrogen, water, and carbon-dioxide from Venus[14].  From the Moon we get KREEP[15].  (potassium, Rare Earth Elements, and Phosphorus) found by the Lunar Prospector mission.

People, plants, livestock, microbes, etc. will come from other Biospheres.

Electronics will probably still come from Earth, at least initially, until technology and infrastructure matures to enable manufacturing of integrated circuits in space.

Artist’s depiction of an agricultural section of Biosphere S, which could be of the Stanford Torus design built mostly from space resources. Credits: Bryan Versteeg / Spacehabs.com

At this point, humans will have become “A space faring species”

In a century, the number of Biospheres created will go from zero to one hundred per year.

Marshall’s Conjecture:

“400 years after the first baby is born in space, there will be more people living in space than on Earth.”  After all, from the time of the signing of The Mayflower Compact to present day is about 400 years and we have 300+ million US citizens vs. the United Kingdom’x 68 million.

The explosion of life:

On Earth there are relationships between the number of humans, the number of support animals and plants.  There are currently 8 billion people on Earth and about 1 billion head of cattle.  I estimate that there are 100 billion chickens, a half billion pigs, etc.

As the number of Biospheres increases in number, so will the number of people, and the number of support plants and animals.  To state it succinctly, there will be an explosion of life in space.

So how many Biosphere S colonies can we build?

Let us assume that they will be spread out evenly in the solar “Goldilocks Zone” (GZ).  Creating a spreadsheet with Inputs: inside radius (IR), outside radius (OR) and minimum spacing; Output: Biosphere slot count.

Using: IR of 80,000,000 miles, OR of 120,000,000 miles, (120% to 33% Earth light intensity[16], respectively) and spacing of 1000 miles between Biospheres (both on an orbit and between orbits) you get: 40,000 orbits with the inner orbit having 502,655 slots and the outer orbit having 753,982 slots. This works out to over 25 billion slots for Biospheres to fill this region.  Assuming 40 people per Biosphere S implies a space population of over a trillion people. And that is only within the GZ. With ever advancing technology like nuclear power enabling settlement further from the sun, there is no reason that humans can’t expand their reach and numbers throughout the solar system, implying many trillions more.

Can we build that many Biospheres?

Let us assume each Biosphere S has a mass of one million tons (10 times larger than a nuclear powered aircraft carrier[17])  That implies 25.1×1015 tons of metal for all of them.  16 Psche’s mass is estimated at 2.29×1016 tons[18].  There are the larger asteroids, e.g. Ceres (9.4×1017tons), Pallas, Juno, Vesta (2.5×1017 tons) and several others.  Assuming the Moon (7.342×1019 tons) is reserved for near Earth use.   If the asteroids are not enough, there are the moons of Mars and Jupiter.  The other needed elements are readily available throughout the solar system, e.g. nitrogen from Venus, water from Europa, dirt from everywhere, so…

YES!  My guess is that it will take 100,000 years to fill the GZ assuming a construction rate of about 250,000 Biospheres per year.  That implies an expansion of the population by about 2 million people a year ( I acknowledge these estimates don’t take into account technological advances which will undoubtedly occur over such long stretches of time that may lead to drastically different outcomes. Remember! Its a SWAG!)

Is this Space Manifest Destiny?  Is it similar to the Manifest Destiny[19] in America from 1840 to 1900?  In my opinion, yes! But this is a very high-tech version of Manifest Destiny.  The bottom line assumption is that the Goldilocks Zone is empty — therefore  — we must go fill it!  Just like the frontiersman of the 1800s.

The First Commandment:

This gives a new interpretation of the phrase from the Book of Genesis,

             “Go forth, be fruitful and multiply[20].

Not only are we people required to have children; but we are required to expand life in many forms wherever we go.  For secular readers, this may be interpreted as the natural evolution of life to thrive in new ecosystems beyond Earth. Therefore, the big expansion of life will be in space.

It all starts with Biospheres X, Y, and Z  optimized for farming in space

========

When considering humanity’s expansion out into the solar system, look at the concepts put forward above and ask: “Is this proposal missing a key step or two in the development of biospheres in space?”

Editor’s Note: Marshall appeared on The Space Show on August 27 to talk about his space farming vision. You can listen to the archived episode here.

References:

  1. B. Venditti, The Cost of Space Flight Before and After SpaceX, The Visual Capitalist, January 27, 2022
  2. M. Williams, How to make the food and water Mars-bound astronauts will need for their mission, , Phys.org, June 1, 2020, Paragraph 4
  3. Perseverance (Rover)/Cost, Wikipedia
  4. Perseverance (Rover) – Dry Mass, Wikipedia
  5. Biosphere 2, Wikipedia
  6. G.K. O’Neill, The High Frontier, 1976, p. 71 – based on Earth-base agriculture – 25 People/Acre; p72 – Optimized for space settlement (i.e. predictable, controlled climate) – 53 People/Acre.
  7. L. Blain, Algae Biopanel Windows Make Power, Oxygen and Biomass, and Suck Up CO2, New Atlas, July 11, 2022
  8. A. Trafton, New Lightweight Material is Stronger than Steel, MIT News, February 2, 2022
  9. Cupola (ISS module) -Specifications, Wikipedia
  10. Biosphere 2 (Planning and Construction), Wikipedia
  11. How much does it cost to develop a shopping mall?, Fixr, October 13, 2022
  12. J. Jossy, The Space Show with Dr. David Livingston, Broadcast 4061, July 25, 2023
  13. J. Jossy, The Impact of the Gravity Prescription on the Future of Space Settlement, Space Settlement Progress, March 29, 2024; J. Jossy and T. Marotta, The Space Show with Dr. David Livingston, Broadcast 3852, April 5, 2022
  14. Atmosphere of Venus (Structure and Composition), Wikipedia, “…total nitrogen content is roughly four times higher than Earth’s…”
  15. KREEP, Wikipedia
  16. Habitable zone (i.e. “Goldilocks Zone”), Wikipedia, Picture/graph, Top-right.
  17. Gerald R. Ford-class aircraft carrier (Design features, displacement), Wikipedia
  18. 16 Psyche (Mass and bulk density), Wikipedia – Note: the mass of all main asteroids are available on Wikipedia
  19. D. M. Scott, The Religious Origins of Manifest Destiny, Divining America, TeacherServe©. National Humanities Center, 2024
  20. Bible: Genesis 1:28 (Adam & Eve), Genesis 9:1 (Noah), Genesis 35:11 (Jacob), and generally repeated elsewhere in the book.
  21. B. Wang, Mass Production Rate of SpaceX Starship Costs, May 28, 2020

The impact of the Gravity Prescription on the future of space settlement

Artist rendering of a family living in a rotating free-space settlement based on the Kalpana Two design, with a length of 110m and diameter of 125m. Credits: Bryan Versteeg / Spacehabs.com

This post summarizes my upcoming talk for the Living in Space Track at ISDC 2024 taking place in Los Angeles May 23 – 26. The presentation is a distillation of several posts on the Gravity Prescription about which I’ve written over the years.

Lets start with a couple of basic definitions. First, what exactly is a space settlement? The National Space Society defined the term with much detail in an explainer by Dale L. Skran back in 2019. I’ve extracted this excerpt with bolded emphasis added:

Space Settlement is defined as: 

​“… a habitation in space or on a celestial body where families live on a permanent basis, and that engages in commercial activity which enables the settlement to grow over time, with the goal of becoming economically and biologically self-sustaining …”

​The point here is that people will want to have children wherever their families put down roots in space communities. Yes, a “settlement” could be permanent and perhaps inhabited by adults that live out the rest of there lives there, such as in a retirement community. But these are not biologically self-sustaining in the sense that settlers have offspring that are conceived, born and raised there living out healthy lives over multiple generations.

Next we should explain what is meant by the Gravity Prescription (GRx). First coined by Dr. Jim Logan, the term refers to the minimum “dosing” of gravity (level and duration of exposure) to enable healthy conception, gestation, birth and normal, viable development to adulthood as a human being…over multiple generations. It should be noted that the GRx can be broken down into at least three components: the levels needed for pregnancy (conception through birth), early child development, and adulthood. The focus of this discussion is primarily on the GRx for reproduction.

We should also posit some basic assumptions. First, with the exception of the GRx, all challenges expected for establishment of deep space settlements can be solved with engineering solutions (e.g. radiation protection, life support, power generation, etc…)​. The one factor that cannot be easily changed impacting human physiology after millions of year of evolution on Earth is gravity. We may find it difficult or even impossible to stay “healthy enough” under hypogravity conditions on the Moon or Mars, assuming all other human factors are dealt with in habitat design.

Lets dive into what we know and don’t know about the GRx. Several decades of human spaceflight have produced an abundance of data on the deleterious effects of microgravity on human physiology, not the least of which are serious reduction in bone and muscle mass, ocular changes, and weakening of the immune system – there are many more. So we know microgravity is not good for human health after long stays. Clearly, having babies under these conditions would not be ethical or conducive for long term settlement.

The first studies carried out on mammalian reproduction in microgravity took place in the early 1990s aboard the Space Shuttle in a couple of experiments on STS-66 and STS-70. 10 pregnant rats were launched at midpregnancy (9 days and 11 days, respectively) on each flight and landed close to the (22 day) term. The rat pups were born 2 days after landing and histology of their brain tissue found spaceflight induced abnormalities in brain development in 70% of the offspring.

It was not until 2017 that the first mammalian study of rodents with artificial gravity was performed on the ISS. Although not focused on reproduction, the Japan Aerospace Exploration Agency (JAXA) performed a mouse experiment in their Multiple Artificial-gravity Research System (MARS) centrifuge comparing the impact of microgravity to 1g of spin gravity. ​The results provided the first experimental evidence that mice exposed to 1g of artificial gravity maintained the same bone density and muscle weight as mice in a ground control group while those in microgravity had significant reductions.

Diagram depicting an overview of the first JAXA Mouse Project in the MARS centrifuge with photos of the experiment on the ISS. Credits: Dai Shiba et al. / Nature. http://creativecommons.org/licenses/by/4.0/

In 2019 JAXA carried out a similar study in the MARS centrifuge adding lunar gravity levels to the mix. This study found that there were some benefits to the mice exposed to 1/6g in that Moon gravity helped mitigate muscle atrophy, but it did not prevent changes in muscle fiber or gene expression​.

Just last year, a team led by Dr. Mary Bouxsein at Harvard Medical School conducted another adult mouse study on the MARS centrifuge comparing microgravity, .33g, .67g and 1g. They found that hind quarter muscle strength increased commensurate with the level artificial gravity concluding, not surprisingly, that spaceflight induced atrophy can be mitigated with centrifucation. The results were reported at the American Society for Gravitational and Space Research last November.​

Returning to mammalian reproduction in space, an interesting result was reported last year in the journal Cell from an experiment by Japanese scientists at the University of Yamanashi carried out on the ISS in 2019. The team, headed up by Teruhiko Wakayama, devised a way to freeze mouse embryos post conception and launch them into space where they were thawed by astronauts and allowed to develop in microgravity. Control samples were cultured in 1g artificial gravity on the ISS and Earth normal gravity on the ground. The mouse embryos developed into blastocysts and showed evidence of cell differentiation/gene expression in microgravity after 4 days​. The researchers claimed that the results indicated that “Mammals can thrive in space”. This conclusion really can’t be substantiated without further research.

Which brings us to several unknowns about reproduction in space. SSP has explored this topic in depth through an interview with Alex Layendecker, Director of the Astrosexological Research Institute. Yet to be studied in depth is (a) conception, including proper transport of a zygote through the fallopian tube to implantation in the uterus. Less gravity may increase the likelihood of ectopic pregnancy which is fatal for the fetus and could endanger the life of the mother; (b) full gestation through all stages of embryo development to birth​; and (c) early child development and maturation to adulthood in hypogravity​. All these stages of mammalian reproduction need to be validated through ethical clinical studies on rodents progressing to higher primate animal models before humans can know if having children in lower gravity conditions on the Moon or Mars will be healthy and sustainable over multiple generations.

AI generated image of an expectant mother with her developing fetus in Earth orbit after mammalian reproduction has been validated via higher animal models through all stages of pregnancy for a safe level of gravity. An appropriate level of radiation shielding would also be required and is not shown in this illustration. Credit: DALL-E-3

Some space advocates for communities on the Moon or Mars have downplayed the importance of determining the GRx for reproduction with the logic that a fetus in a woman’s uterus on Earth is in neutral buoyancy and thus is essentially weightless. Therefore, why does gravity matter? ​ I discussed this question with Dr. Layendecker and he had the following observations paraphrased here: True, gravity may have less of an impact in the first trimester. But on the cellular level, cytoskeletal development and proper formation/organization of cells may be impacted from conception to birth​. Gravity helps orient the baby for delivery in the last trimester​ and keeps the mother’s uterine muscles strong for contractions/movement of the baby through the birth canal​. There are many unknowns on what level of gravity is sufficient for normal development from conception to adulthood.

Why does all this matter? Ethically determining the right level of gravity for healthy reproduction and child development will inform where families can safely settle space​. The available surface gravities of bodies where we can establish communities in space cluster near Earth, Mars and Moon levels​. These are our only GRx options ​on solar system bodies.

Gravity level clustering of solar system bodies available for space settlement. Credit: Joe Carroll

The problem is that we don’t yet know whether we can remain healthy enough on bodies with gravity equivalent to that on the Moon or Mars, so we can’t select realistic human destinations or formulate detailed plans until we acquire this knowledge​. Of course we can always build rotating settlements in free space with artificial gravity equivalent to that on Earth. Understanding the importance of the GRx and determining its value could change the strategy of space development in terms of both engineering and policy decisions. The longer we delay, the higher the opportunity costs in terms of lost time from failure to act​.

What are these opportunity cost lost opportunities​? Clearly, at the top of Elon Musk’s list is “Plan B” for humanity, i.e. a second home in case of cataclysmic disaster such as climate change, nuclear war, etc. This drives his sense of urgency. From Gerard K. O’Neill’s vision in The High Frontier, virtually unlimited resources in space could end hunger and poverty, provide high quality living space for rapidly growing populations​, achieve population control without war, famine, or dictatorships​. And finally, increase freedom and the range of options for all people​.

If humans can’t have babies in less than Earth’s gravity then the Moon and Mars may be a bust for long term (biologically sustainable) space settlement.​ There will be no biologically sustainable cities with millions of people on other worlds unless they can raise families there​.

Spin gravity rotating space settlements providing 1g artificial gravity may be the only alternative​. If Elon Musk knew that the people he wants to send to Mars can’t have children there, would he change his plans for a self-sustaining colony on that planet?​ Having and raising children is obviously important to him. As Walter Isaacson wrote in his recent biography of Musk, “He feared that declining birthrates were a threat to the long-term survival of human consciousness.”

So how could he determine the GRx quickly? One solution would be to fund a partial gravity facility in low Earth orbit to run ethical experiments on mammalian reproduction in hypogravity. Joe Carroll has been refining a proposal for such a facility, a dual dumbbell Moon/Mars low gravity laboratory which SSP has covered, that could also be marketed as a tourist destination. Spinning at 1.5 rpm, the station would be constructed from a combination of Starship payload-sized habitats tethered by airbeams allowing shirt sleeve access to different gravity levels​. Visitors would be ferried to the facility in Dragon capsules and could experience 3 gravity levels with various tourist attractions​. The concept would be faster, cheaper, safer and better than establishing equivalent bases on the Moon or Mars to quickly learn about the GRx​. The facility would be tended by crews at both ends that live & collect health data for up to a year or more​. And of course, ethical experiments on the GRx for mammalian reproduction would be carried out, first on rodents and then progressing to higher primates if successful.

Left: Conceptual illustration depicting a LEO Moon-Mars dumbbell partial gravity facility constructed from Starship payload-sized habitats tethered by airbeams and serviced by Dragon capsules. Rectangular solar arrays deploy by hanging at either end as spin is initiated via thrusters at Mars module. Center: Image of an inflated airbeam demonstration. Right: diagram of an airbeam stowed for transport and after deployment. Credit: Joe Carroll

What if these experiments determine that having children in lower gravity is not possible and our only path forward are free-space rotating settlements? Physics and human physiology require that they be large enough for settlers to tolerate a 1g spin rate to prevent disorientation. As originally envisioned by O’Neill, the diameter of his Island One space settlement would be about 500 meters.

Conceptual illustration of an Island One space settlement. The living space sphere is sized at about 500m in diameter. Credits: Rick Guidice / NASA

As originally proposed, these settlements would be located outside the Earth’s magnetic field at the L5 Earth-Moon Lagrange Point necessitating that they be shielded with enormous amounts of lunar regolith to protect occupants from radiation. Their construction requires significant technology development and infrastructure (e.g. mass drivers on the Moon, automated assembly in space, advances in robotics, power sources, etc…)​. Much of this will eventually be done anyway as space development progresses…however, knowing the GRx (if it is equal to 1g) may foster a sense of urgency​.

Some may take the alternative viewpoint that if we know that Earth’s gravity works just fine we could proceed directly to free-space settlements if we could overcome the mass problem. This is the approach Al Globus and Tom Marotta took in their book The High Frontier: An Easier Way with Kalpana One​, a 450m diameter cylindrical rotating free-space settlement located in equatorial low Earth orbit (ELEO) protected by our planet’s magnetic field, thereby reducing the mass significantly because there would be far less need for heavy radiation shielding.

Artist impression of Kalpana One rotating free-space settlement located in equatorial low Earth orbit. Credits: Bryan Versteeg / Spacehabs.com

But there may be an even easier way. Kasper Kubica has proposed a 10 year roadmap to the $10M condo in ELEO based on Kalpana Two, a scaled down version of the orbital settlement described by Al Globus in a 2017 Space Review article.

Artist rendering of the inside of a rotating free-space settlement based on the Kalpana Two design, with a length of 110m and diameter of 125m. Credits: Bryan Versteeg / Spacehabs.com

Even though these communities would be lower mass, they will still require significant increases in launch rates to place the needed materials in LEO, especially near the equator​. Offshore spaceports, like those under development by The Spaceport Company, could play a significant role​ in this infrastructure. Legislation providing financial incentives to municipalities to build spaceports would be helpful, such as The Secure U.S. Leadership in Space Act of 2024 introduced in Congress last month. The new law (not yet taken up in the Senate) would amend the IRS Code to allow spaceports to issue tax-exempt Muni bonds for infrastructure improvements.

Wouldn’t orbital debris present a hazard for settlements in ELEO?​ Definitely yes, and the National Space Society is shaping policy in this area. The best approach is to emphasize “light touch” regulatory reform on salvage rights, with protection and indemnity of the space industry to encourage recycling and debris removal.​ Joe Carroll has suggested a market-based approach that would impose parking fees for high value orbits, which would fund a bounty system for debris removal. This system would incentivize companies like CisLunar Industries, Neumann Space and Benchmark Space Systems, firms that are developing space-based processes to recycle orbital debris into useful commodities such as fuel and structural components.

Further down the road in technology development and deeper into space, advances in artificial intelligence and robotics will enable autonomous conversion of asteroids into rotating space settlements, as described by David Jensen in a paper uploaded to arXiv last year.​ This approach significantly reduces launch costs by leveraging in situ resource utilization. Initially, small numbers of “seed” tool maker robots are launched to a target asteroid​ along with supplemental “vitamins” of components like microprocessors that cannot be easily fabricated until technology progresses, to complete the machines. These robotic replicators use asteroid materials to make copies of themselves and other structural materials eventually building out a rotating space settlement. As the technology improves, the machines eventually become fully self-replicating, no longer requiring supplemental shipments from Earth.

Artist impression of a rotating space settlement constructed from asteroid materials. Credits: Bryan Versteeg, spacehabs.com

Leveraging AI to enable robots to build space settlements removes humans from the loop initially, eliminating risk to their health from exposure to radiation and microgravity​. Send it the robot home builders – families then safely move in later. There are virtually unlimited supplies in the asteroid belt to provide feedstock to construct thousands of such communities.

Artist impression of the interior of Stanford Torus free-space settlement. Advances in artificial intelligence and robotics will enable autonomous self replicating machines that could build thousands of such communities from asteroid material. Credits: Don Davis / NASA

If rotating space settlements with Earth-normal gravity become the preferred choice for off-Earth communities, where would be the best location, the prime real estate of the solar system? Jim Logan has identified the perfect place with his Essential Seven Settlement Criteria.

  • Low Delta-V​ – enabling easy access with a minimum of energy
  • Lots of RESOURCES​ … obviously!
  • Little or No GRAVITY WELL​ – half way to anywhere in the solar system
  • At or Near Earth Normal GRAVITY for​
    People, Plants and Animals ​- like what evolved on Earth
  • Natural Passive 24/7 RADIATION Protection​ – for healthy living
  • Permit Large Redundant Ecosystem(s)​ – for sustenance and life support
  • Staging Area for Exploration and Expansion​
    (including frequent, recurrent launch windows)​

Using this criteria, Logan identified Deimos, the outermost moon of Mars, as the ideal location. As discussed above, AI and robotic mining technology improvements will enable autonomous boring machines to drill a 15km long core through this body with a diameter around 500 meters – sized for an Island One space settlement to fit perfectly.

Conceptual illustration of a 500 meter wide by 15km long core bored through Deimos. Credit: Jim Logan

In fact, 11 Island One space colonies (minus the mirrors) strung end to end through this tunnel would provide sea level radiation protection and Earth normal artificial gravity for thousands of healthy settlers.

Left: Artist impression of an Island One space settlement. Credits: Rick Guidice / NASA. Right: To scale depiction of 11 Island One space settlements strung end-to-end in a cored out tunnel through Deimos providing sea level radiation protection and Earth normal artificial gravity. Credit: Jim Logan

In conclusion, the GRx for reproduction will inform where biologically self-sustaining healthy communities can be established in space. If we find that the GRx is equal to Earth’s normal level, free-space settlements with artificial gravity will be the safest and healthiness solution for humans to live and thrive throughout the solar system. The sooner we determined the GRx the better, for current plans for settling the Moon or Mars may need to be altered to consider rotating space colonies, which will require significant infrastructure development and regulatory reform​. Alternatively, since we know Earth’s gravity works just fine, we may choose to skip determination of the GRx and start small with Kalpana in low Earth orbit. Eventually, artificial intelligence will enable safe, autonomous self-assembly of space settlements from asteroids. The interior of Deimos would be the perfect place to build safe, healthy, biologically self-sustaining space settlements for thousands of families to raise their children, establishing a beachhead from which to explore the rest of the solar system and preserve the light of human consciousness.

Update June 3, 2024: Here is a recording of my presentation on this topic at ISDC 2024.

Autonomous conversion of asteroids into rotating space settlements

Artist impression of a rotating space settlement constructed from an asteroid. Credits: Bryan Versteeg, spacehabs.com

When Gerard K. O’Neill first proposed building enormous rotating space settlements at the Earth-Moon Lagrange points back in the 1970s he envisioned many space shuttle flights to launch the initial equipment and people into space. He thought that mass drivers placed on the Moon would be an efficient and cost effective mechanism for lofting copious amounts of lunar regolith needed for radiation shielding to protect colonists aboard the settlements. Alas, the economics of the shuttle did not work out back then, as reusability (among other things) was not ready for prime time, making launch costs a show stopper. Also, O’Neill thought that hundreds of people would be working under weightless conditions in space to fabricate the settlements. This was problematic because of the health hazards of exposure to radiation and microgravity.

All three problems can be solved according to David W. Jensen in an article posted on the ArXiv server. He envisions restructuring an asteroid into a spin gravity space settlement using self replicating robots to process asteroid materials in situ. High launch costs would be solved with a single modest-size probe containing a small number of seed robots that fashion more robots, tools and equipment. This approach bootstraps the colony fabrication through self replicating machines and in situ resource utilization.

“The restructuring process improves the productivity using self-replication parallelism and tool specialization.”

By removing humans from the initial asteroid processing activities, health risks from radiation and the deleterious effects of microgravity would be eliminated. Restructuring of the asteroid would take about a decade, after which colonists would have a rotating space settlement the size of a Stanford Torus providing Earth normal gravity and a safe living space shielded from radiation, ready for buildout and eventual occupation.

Cutaway view of a Stanford Torus space settlement. Credits: Rick Guidice / NASA

The key to this approach is self replication of robots delivered in the initial seed payload which significantly reduces costs by launching only one rocket to the target asteroid. The first machines sent are called replicators, or spiders for short. Four of these spiders with a minimum of supplies use the raw materials of the asteroid to make thousands of copies of themselves plus additional helper machines (tools and equipment). The spiders and helpers cooperate to produce end products of construction materials and the colony structures.

Jensen does not assume total self-replication, meaning that the robots do not need to make complete copies of themselves. A small percentage of more complex mechanisms such as microprocessors are provided in the initial payload as supplemental “vitamins” to finish out the machines. The intent is to minimize the need for humans in the initial construction phase. The objective is to fabricate a basic scaffolding for a rotating space settlement with access to an abundant storehouse of volatiles and metals. The final enclosed structure would then support migration of colonists who would complete construction and add more advanced manufacturing technologies such as solar cell production and microelectronics. As SSP has explained previously, complete closure of self-replicating machines is very challenging, but is not needed in this case.

The technology has wide applications and could be applied to Earth’s desserts, on the surface of the Moon or Mars, or even on the satellites of Jupiter and Saturn.

“We plan to apply and study these concepts for use in lunar, Titan, and Martian environments.”

Jensen’s restructuring process could complement or be combined with other asteroid mining architectures such as the University of Rochester’s approach which builds spin gravity cities starting with a carbon fiber collapsible scaffolding completely encapsulating the target asteroid. As the process matures it could be applied to even larger bodies such as the asteroid Ceres eventually combining settlements into a mega satellite community as envisioned by Pekka Janhunen.

“The equipment and process are scalable and … create a
space station structure that can support a population of nearly
one million people.”