ICON awarded $57 Million by NASA to develop lunar 3D printing technology for lunar surface construction

Conceptual illustration of Olympus, a lunar construction system based on in situ resource utilization. Credits: ICON

In a press release, the Austin based company reports how the Phase III award under NASA’s Small Business Innovation Research (SBIR) program will be used to adapt its existing additive manufacturing process for home building on Earth to the Olympus system using lunar regolith for fabrication of structures on the Moon. ICON envisions the system to be integrated into a rover that will be delivered to the Moon via a lander. The rover will then autonomously drive to a target site where the Olympus laser 3D printer will process lunar regolith into useful structures. The system can be used for fabricating roads, landing pads and habitats out of local resources without having to bring building materials from Earth, thereby significantly lowering costs. Once the system is proven on the Moon, perhaps in the later stages of Artemis, the same technology can be applied on Mars as well.

ICON plans to test the system “…via a lunar gravity simulation flight” although no details were revealed on such a mission. Presumably, this would be a parabolic flight in the Earth’s atmosphere. The company would use samples of lunar soil brought back during the Apollo missions and lunar regolith simulant to tune the process variables of their laser 3D printing equipment operating under these conditions. Once optimized, Olympus would be placed on the Moon “…to establish the critical infrastructure necessary for a sustainable lunar economy including, eventually, longer term lunar habitation.”

“The final deliverable of this contract will be humanity’s first construction on another world, and that is going to be a pretty special achievement.”

– Jason Ballard, ICON co-founder and CEO

Paragon selected by NASA to develop lunar water collection and purification system

Image Credit: NASA’s Goddard Spaceflight Center

Paragon Space Development Corporation, a subcontractor for Dynetics which is one of the three companies NASA has selected to begin work on designs for human lunar landers, was just awarded a Small Business Innovation Research (SBIR) Phase I grant to develop its ISRU Collector of Ice in a Cold Lunar Environment or ICICLE. The system will use a cold trap for collecting and purifying water from ice mining the permanently shadowed regions of the lunar poles. The purification and collection of lunar water is a critical step in generating in-situ propellant, breathable oxygen, and potable water for space settlements and the cislunar economy.