Dennis Wingo’s strategy for development of cislunar space and beyond

Image credit: NASA/Goddard/Arizona State University

The Cislunar Science and Technology Subcommittee of the White House Office Science and Technology Policy Office (OSTP) recently issued a Request for Information to inform development of a national science and technology strategy on U.S. activities in cislunar space.

Dennis Wingo provided a response to question #1 of this RFI, namely what research and development should the U.S. government prioritize to help advance a robust, cooperative, and sustainable ecosystem in cislunar space in the next 10 to 50 years?

In a prolog to his response Wingo reminds us that historically, NASA’s mission has focused narrowly on science and technology.  What is needed is a sense of purpose that will capture the imagination and support of the American people.    In today’s world there seems to be more dystopian predictions of the future than positive visions for humanity.  We seem to be dominated by fear of “…doom and gloom scenarios of the climate catastrophe, the degrowth movement, and many of the most negative aspects of our current societal trajectory.”  This fear is manifested by what Wingo defines as a “geocentric” mindset focused primarily within the material limitations of the Earth and its environs.

“The question is, is there an alternative to change this narrative of gloom and doom?”

He recommends that policy makers foster a cognitive shift to a “solarcentric” worldview: the promise of an economic future of abundance through utilization of the virtually limitless resources of the Moon, Asteroids, and of the entire solar system.  An example provided is to harvest the resources of the asteroid Psyche which holds a billion times the minable metal on Earth, and to which NASA had planned on launching an exploratory mission this year but had to delay it due to late delivery of the spacecraft’s flight software and testing equipment.

Artist rendering of NASA’s Psyche Mission spacecraft.  Credits: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin

Back to the RFI, Wingo has four recommendations that will open up the solar system to economic development and address many of the problems that cause the geocentrists despair. 

First, we should make the Artemis moon landings permanent outposts with year long stays as opposed to 6 day “camping trips”. This should be possible with resupply missions by SpaceX as they ramp up Starship launch rates (assuming the launch vehicle and lander are validated in the same timeframe, which seems reasonable). Next, we need power and lots of it – on the order of megawatts.  This should be infrastructure put in place by the government to support commerce on the Moon.  By leveraging existing electrical power standards and production techniques, large scale solar power facilities could be mass produced at low cost on Earth and shipped to the moon before the capability of in situ utilization of lunar resources is established.  Some companies such as TransAstra already have preliminary designs for solar power facilities on the Moon.

Which brings us to ISRU.  The next recommendation is to JUST DO IT.  This technology is fairly straightforward and could be used to split oxygen from metal oxides abundant in lunar regolith to source air and steel.  Pioneer Astronautics is already developing what they call Moon to Mars Oxygen and Steel Technology (MMOST) for just this application.

Conceptual illustration of the Lunar OXygen In-situ Experiment (LOXIE) Production Prototype. Credits: Mark Berggren / Pioneer Astronautics

And lets not forget the wealth of in situ resources that could be unlocked via synthetic geology made possible by Kevin Cannon’s Pinwheel Magma Reactor.

Conceptual depiction of the Pinwheel Magma Reactor on a planetary surface in the foreground and in free space on a tether as shown in the inset. Credits: Kevin Cannon

Of course there is water everywhere in the solar system just waiting to be harvested for fuel and life support in a water-based economy.

Illustration of an ice extraction concept for collection of water on the Moon. Credits: George Sowers / Colorado School of Mines

Wingo’s final recommendation is industrialization of the Moon in preparation for the settlement of Mars followed by the exploration of the vast resources of the Asteroid Belt.  He makes it clear that this is more important than just a goal for NASA, which has historically focused on scientific objectives, and should therefore be a national initiative.

“…for the preservation and extension of our society and to preclude the global fight for our limited resources here.”

With the right vision afforded by this approach and strong leadership leading to its implementation, Wingo lays out a prediction of how the next fifty years could unfold. By 2030 over ten megawatts of power generation could be emplaced on the Moon which would enable propellant production from the pyrolysis of metal oxides and hydrogen production from lunar water.  This capability allows refueling of Starship obviating the need to loft propellent from Earth and thereby lowering the costs of a human landing system to service lunar facilities.  From there the cislunar economy would begin to skyrocket.

The 2040s see a sustainable 25% annual growth in the lunar economy with a burgeoning Aldrin Cycler business to support asteroid mining and over 1000 people living on the Moon.

By the 2050s, fusion reactors provide power and propulsion while the first Ceres settlement has been established providing minerals to support the Martian colonies.

“The sky is no longer the limit”

By sowing these first seeds of infrastructure a vibrant cislunar economy will enable sustainable settlement across the solar system. A solarcentric development mythology may be just what is needed to become a spacefaring civilization.

Artist’s concept of an O’Neill space colony. Credits: Rachel Silverman / Blue Origin

NewSpace features the dawn of the age of space resources

Illustration showing concept of operations of the RedWater mining system for water extraction on Mars developed by Honeybee Robotics. Credits: Mellerowicz et al. via New Space

The editorial in the latest issue of New Space, coauthored by two of SSP’s favorite ISRU stars, Kevin Cannon and George Sowers, describes the dawning age of space resource utilization. Cannon, who guest edits this issue, and Sowers are joined by the rest of the leadership team of the graduate program in Space Resources at the The Colorado School of Mines: Program Director Angel Abbud-Madrid and professor Chris Dreyer. The program, created in 2017, has over 120 students currently enrolled. These are the scientists, engineers, economists, entrepreneurs and policymakers that will be leading the economic development of the high frontier, creating the companies and infrastructure for in situ resource utilization that will enable affordable and prosperous space settlement.

How can regolith on the Moon and Mars be refined into useful building materials? What are the methods for extracting water and oxygen from other worlds for life support systems and rocket fuel? Is it legal to do so? Will private property rights be granted through unilateral legislation? What will space settlers eat? The answers to all these questions and more are addressed in this issue, many of the articles free to access.

One of my favorite pieces, the source of this post’s featured image, is on the RedWater system for harvesting water on Mars. This technology, inspired by the proven Rodwell system in use for sourcing drinking water at the south pole, was developed by Honeybee Robotics, just acquired by Blue Origin earlier this year. End-to-end validation of the system under simulated Mars conditions demonstrated that water could be harvested from below an icy subsurface and pumped to a tank up on the surface.

We need to start thinking about these technologies now so that plans are ready for implementation once a reliable, affordable transportation system comes on line in the next few years led by companies such as SpaceX and others. Sowers has been working on thermal ice mining on cold worlds throughout the solar system for some time, predicting that water will be “the oil of space”. Cannon has been featured previously on SSP with his analytical tools related to lunar mining, the Pinwheel Magma Reactor for synthetic geology and plans for feeding millions of people on Mars.

The Pinwheel Magma Reactor: synthetic geology for ISRU

Image
Conceptual depiction of the Pinwheel Magma Reactor on a planetary surface in the foreground and in free space on a tether as shown in the inset. Credits: Kevin Cannon

How can space settlers harness useful resources that have not been concentrated into ore bodies like what takes place via geologic process on Earth over eons of time? Could we artificially speed up the process using synthetic geology? Kevin Cannon, a planetary geologist at the Colorado School of Mines (CSM), thinks it might be possible to unlock the periodic table in space to access a treasure trove of materials with an invention he calls the Pinwheel Magma Reactor. He has submitted a NASA Innovative Advanced Concepts proposal for the concept. The device is a essentially a centrifuge sitting on a planetary surface with a solar furnace reaction chamber spun at the end of its axis. In space, a free flying system could be connected by tether.

PMR chambers are positioned at the end of the axis of a centrifuge. Credits: Kevin Cannon

In a Twitter thread Cannon sets the table with a basic geology lesson explaining why mining on Earth is so different from what we will need in space. The Earth’s dynamic crustal processes, driven by fluid flow and plate tectonics over millions of years, exhibit a very different geology then that under which the Moon, Mars and asteroids evolved. The critical minerals that could be useful to support life and a thriving economy in space settlements are present in far lower concentrations in space then on Earth.

Current plans for ISRU infrastructure on the Moon and asteroids are only targeting a small set of elements like hydrogen, oxygen, carbon, silicon and iron (below, left).

Illustration of the periodic table showing currently targeted elements for ISRU on the left. On the right, the most mined elements on Earth (colored gold) and critical elements (orange) useful for an advanced society. Credits: Kevin Cannon

But an advanced society expanding out into the solar system would benefit from many critical minerals (above, right) that are not easily accessible because of their far lower concentrations. For example, energy production will need uranium and thorium, energy storage systems require lithium and electronics manufacturing is dependent on rare earths. So how to unlock the periodic table for these critical materials?

If we are to live off the land by harvesting useful materials to build and sustain space settlements we’ll need a totally revolutionary mining process. The PMR was designed with this in mind. The procedure begins by loading unprepared rocks or regolith into the chamber followed by heating via a solar furnace. Next, the chamber is spun up in the centrifuge where super gravity concentrates the desired minerals. Cannon believes that the PMR could also be used to extract water from regolith on the moon or asteroids.

“If hydrated asteroid material or icy regolith are put in at low temperatures, they’ll be separated by super-gravity and can be siphoned off.”

Of course the technology needs to be validated and flight hardware developed to determine if the PMR can be a tool to speed up the geological processes to concentrate useful materials for humans, who can then use them to synthetically propagate life in space. Cannon sums it up:

“Obviously a lot of work to be done to prove out the concept. But I think that a process flow of synthetic geology -> synthetic biology is the way to solve the concentration problem in space and enrich any element we want from the periodic table.”

Check out Cannon’s research page at The Cannon Group . He also blogs on space resources and development at Planetary Intelligence.