Neumann Drive successfully tested in space

Company images of a Neumann Drive at upper left with it’s plasma discharge produced in the lab at upper right overlayed above the Earth from space. Credits: Neumann Space / NASA

Neumann Space has announced completion of initial on-orbit tests of its innovative electric propulsion system, the first of its kind utilizing solid metal as propellent to fuel a cathodic arc discharge to generate thrust via plasma exhaust. The commissioning campaign for the system confirmed that the electronics worked properly and that the thruster fired. Next up: following last December’s launch of the company’s second experiment in space, an engineering demonstration later this year will test that the propulsion system can change the orbit of a satellite.

Neumann Space has already lined up both a customer and a potential space-based source of fuel through a partnership with CisLunar Industries. In this symbiotic relationship, CisLunar will utilize Neumann’s thruster to propel their servicing vehicle that hunts down chunks of metallic space debris which will be captured and delivered to a salvage platform to be recycled into metal propellent via CisLunar’s Modular Space Foundry (previously called Micro Space Foundry). The servicing vehicle can then refuel itself to proceed to its next target. SSP reported previously on this propulsion ecosystem which could literally turn trash into treasure while cleaning up orbital debris.

Conceptional illustration of propulsion ecosystem based on CisLunar Industries Modular Space Foundry process for recycling orbital debris. Credits: CisLunar Industries

The orbital debris issue not only poses a serious threat to human spaceflight in Earth orbit, unless policies and standard practices are implemented to mitigate the issue, remote sensing, climate monitoring, weather forecasting and all commercial activities in space could be at risk, not to mention long term sustainable space settlement. The on-orbit recycling partnership between Neumann Space and CisLunar Industries will help implement the remediation pillar of the National Orbital Debris Mitigation Plan promulgated in 2022 by the White House Office of Science and Technology Policy.

In other news, CisLunar Industries was one of fourteen other companies selected by DARPA for its LunA-10 program, a lunar architecture study that will define commercial activities in an integrated infrastructure for lunar development over the next 10 years. CisLunar will collaborate with industry partners to develop what they call METAL, a framework for Material Extraction, Treatment, Assembly & Logistics in a lunar economy based on in situ resource utilization.

Sustainable space commerce and settlement

Artist impression of a sustainable settlement on the Moon. Credits: ESA – CC BY-SA IGO 3.0

Dylan Taylor of Voyager Space Holdings recently wrote an article in The Space Review on sustainable space manufacturing. He makes a convincing case that long-duration space missions and eventual human expansion throughout the solar system will require radical changes in the way we design, manufacture, repair and maintain space assets to ensure longevity. In addition, the cost of lifting materials out of Earth’s deep gravity well will drive sustainable technologies such as additive manufacturing in space and in situ resource utilization to reduce the mass of materials needed to be launched off our planet to support space infrastructure. In-space recycling and reuse technologies will also be needed along with robotic manufacturing, self-reparability and eventually, self-replicating machines.

But there is more to the philosophy of sustainability and its impact on the future of space activities. According to the Secure World Foundation (SWF), sustainability is essential for “Ensuring that all humanity can continue to use outer space for peaceful purposes and socioeconomic benefit now and in the long term. This will require international cooperation, discussion, and agreements designed to ensure that outer space is safe, secure and peaceful.” Much of the discussion centers around the problem of orbital debris, radio frequency interference, and accidental or irresponsible actions by space actors. SWF is active in facilitating dialog among stakeholders and international cooperation.

The National Science and Technology Council released a report in January called the National Orbital Debris Research and Development Plan. To address the issue, there are several companies about to start operations in LEO to deal with the orbital debris or in-orbit servicing. Japan based Astroscale just launched a demonstration mission of their End-of-Life Services by Astroscale (ELSA) platform to prove the technology of capturing and deorbiting satellites that have reached their end of life or other inert orbital debris.

Image of the Astroscales ELSA-d mission showing the larger servicer spacecraft releasing and preparing to dock with a “client” in a series of technical demonstrations, proving the capability to find and dock with defunct satellites and other debris. Credits Astroscale.

Even financial services and investment houses like Morgan Stanley are pushing for sustainability to reduce the risks to potential benefits emerging from the Newspace economy such as remote sensing to support food security, greenhouse gas monitoring, and renewable energy not to mention internet access for billions of people.

Sustainable operations on the Moon are being studied by several groups as the impact of exploration and development of Earth’s natural satellite is considered. Lunar dust when kicked up by rocket exhaust plumes could create hazards to space actor’s assets as well as Apollo heritage sites. SWF, along with For All Moonkind, the Open Lunar Foundation, the MIT Space Exploration Initiative and Arizona State University have teamed up on a project called the Moon Dialogs to advance interdisciplinary lunar policy directions on the mitigation of the lunar dust problem and to shape governance and coordination mechanisms among stakeholders on the lunar surface. SSP’s take on lunar dust mitigation was covered last July.

These few examples just scratch the surface. NASA, ESA and the UN Office for Outer Space Affairs have initiatives to foster sustainability in space. Humanity will need a collaborative approach where public and private stakeholders work together to ensure that the infrastructure to support near term commercial activities in space and eventual space settlement is both durable and self-sustaining.

The long-term sustainability of space. Credits: ESA / UNOOSA