The prospects for mining precious metals and structural materials from asteroids

Artist impression of an asteroid smelting operation. Credits: Bryan Versteeg / spacehabs.com

When humanity migrates out into the solar system we’ll need a variety of elements on the periodic table to build settlements and the infrastructure needed to support them such as solar power satellites. But before that future becomes a reality, there may be a near term market on Earth for precious metals sourced in space as transportation costs come down. There is also the added benefit of moving the mining industry off planet to preserve the environment. Could the asteroid belt provide these materials? Kevin Cannon, assistant professor at the Space Resources Program at the Colorado School of Mines describes the prospects for mining precious metals and building materials for space infrastructure asteroids in a recent paper in Planetary and Space Science. Coauthors on the paper Matt Gialich and Jose Acain, are CEO and CTO, respectively, at the asteroid mining company AstroForge which just came out of stealth mode last year.

The asteroids have accessible mining volume that exceeds that available on the Moon or Mars. This is because only the thin outer crust of these bodies is reachable by excavation, whereas the asteroids are small enough to be totally consumed resulting in higher accessible mining volume.

To-scale accessible mining volume of terrestrial bodies, calculated as the total volume for the asteroids (main belt mass of 2.39 x 1023 kg, mean bulk density of 2000 kg/m3), and as the volume for an outer shell 1.2 km in thickness for the Moon, Mercury, and Mars, equivalent to the deepest open pit mine on Earth. Note the combined volume of the near-Earth asteroids (~5 x 1012 m3) is too small to be visible at this scale. Figure 1 in paper. Credits K.M. Cannon et al.

The authors take a fresh look at available data from meteorite fragments of asteroids. Their analysis found that for Platinum Group Metals (PGMs), the accessible concentrations are higher in asteroids than ores here on Earth making them potentially profitable to transport back for use in commodity markets.

“Asteroids are a promising source of metals in space, and this promise will mostly be unlocked in the main belt where the Accessible Mining Volume of bodies greatly exceeds that of the terrestrial planets and
moons”

PGMs are indispensable in a wide range of industrial, medical, and electronic applications. Some examples of end-use applications include catalysts for the petroleum and auto industries (palladium and platinum), in pacemakers and other medical implants (iridium and platinum), as a stain for fingerprints and DNA (osmium), in the production of nitric acid (rhodium), and in chemicals, such as cleaning liquids, adhesives, and paints (ruthenium).

It has been pointed out by some analysts that flooding markets here on Earth with abundant supplies of PGMs from space will cause prices to plummet, but the advantage of reducing carbon emissions and environmental damage associated with mining activities may make it worth it. The authors also point out that there are probably various uses where PGMs offer advantages in material properties over other metals but are not being used because they are currently too expensive.

Asteroids are rich in other materials such as silicon and aluminum which would be economically more useful for in-space applications. As the authors point out, some companies are already planning for use of metals and manufacturing in space such as Redwire Corporation with their On-Orbit Servicing, Assembly and Manufacturing (OSAM) and Archinaut One, which will attempt to build structural beams in LEO. Another example mentioned in the paper has been covered by SSP: the DARPA NOM4D program with aspirations to develop technologies for manufacturing megawatt-class solar arrays and radio frequency antennas using space materials. Finally, another potential market for aluminum sourced in space is fuel for Neumann Thrusters (although spent upper stage orbital debris may provide nearer term supplies). And of course, silicon will be needed to fabricate photovoltaic cell arrays for space-based solar power.

AstroForge will test their asteroid mining technology on two missions this year. Brokkr-1, a 6U CubeSat just launched on the SpaceX Transporter 7 mission last April, will validate the company’s refinery technology for extracting metals by vaporizing simulated asteroid materials and separating out the constituent components. Brokkr-2 will launch a second spacecraft on a rideshare mission chartered by Intuitive Machines attempting their second Moon landing later this year. Brokkr-2 will hitch a ride and then fly on to a target asteroid located over 35 million km from Earth. The journey is expected to take about 11 months and will fly by the body and continue testing for two years to simulate a roundtrip mission.

Converting orbital trash to treasure with CisLunar Industries’ Micro Space Foundry

Illustration of orbital debris recycling. Instead of deorbiting after a few missions, debris removal spacecraft can refuel themselves with metal propellant using the Micro Space Foundry extending the lifespan and lowering costs. Credits: CisLunar Industries

CisLunar Industries is developing an innovative way to clean up Earth orbit by recycling spent rocket stages and other orbital debris using their Micro Space Foundry (MSF). In a March 2 presentation to the Future In-Space Operations telecon, CisLunar CEO Gary Calnan described the technology and markets for the MSF, development of which was funded by an SBIR/STTR grant from NASA. There is a vast untapped value chain of metals high above our heads. Over the last 60 years as satellites have been launched into space, the used upper stages have been cluttering up low Earth orbit and beyond. But the trash has value because it is useful material in orbit that has already incurred the launch cost.

The system works by robotically cutting aluminum feedstock off of derelict satellites and then processing the metal through the MSF using electromagnetic levitation furnace technologies originally proven on the ISS for virtually contactless metal recycling and reuse in a weightless environment. The MSF spits out rods of “fuel” to feed a Neumann Thruster on the debris removal spacecraft, which can then be powered to deorbit the target satellite and move on to its next destination. Rinse and repeat. The architecture has the potential to change the economics of the cislunar economy by harvesting a valuable in situ resource while cleaning up Earth orbit at the same time.

The Neumann Thruster, invented by Dr. Patrick “Paddy” Neumann, is an electric propulsion system for in-space use which is a highly adjustable, efficient and scalable method for moving satellites where they are needed. The Neumann Drive uses solid metal propellant and electricity to produce thrust via a pulsed cathodic arc system analogous to an arc welder. Neumann, who created the company Neumann Space to commercialize his invention, explains the physics behind the thruster in a video of an early prototype.

CisLunar Industries has other applications planned for the MSF in an emerging in-space ecosystem. In addition to extruding metallic rods as propellant, the system can fabricate long tubes for large-scale space structures or wires for additive manufacturing enabling an in-space commodities value chain and creating demand for processed metals.

Conceptual illustration of the MSF core processing unit, utilizing a modular design to enable lower cost flexible deployment and multiple products in an emerging cislunar economy. Credits: CisLunar Industries

So how mature is the technology? CisLunar has already demonstrated component validation in the lab taking the system to TRL 4. You can see a video documenting the experiment at timestamp 35:54 here. A parabolic flight to run an experiment in simulated weightlessness is scheduled for later this year. Actual in-space end-to-end demonstration with a Neumann Thruster is planned in 2024 via an agreement with Australian space services company Skykraft.