Dennis Wingo’s strategy for development of cislunar space and beyond

Image credit: NASA/Goddard/Arizona State University

The Cislunar Science and Technology Subcommittee of the White House Office Science and Technology Policy Office (OSTP) recently issued a Request for Information to inform development of a national science and technology strategy on U.S. activities in cislunar space.

Dennis Wingo provided a response to question #1 of this RFI, namely what research and development should the U.S. government prioritize to help advance a robust, cooperative, and sustainable ecosystem in cislunar space in the next 10 to 50 years?

In a prolog to his response Wingo reminds us that historically, NASA’s mission has focused narrowly on science and technology.  What is needed is a sense of purpose that will capture the imagination and support of the American people.    In today’s world there seems to be more dystopian predictions of the future than positive visions for humanity.  We seem to be dominated by fear of “…doom and gloom scenarios of the climate catastrophe, the degrowth movement, and many of the most negative aspects of our current societal trajectory.”  This fear is manifested by what Wingo defines as a “geocentric” mindset focused primarily within the material limitations of the Earth and its environs.

“The question is, is there an alternative to change this narrative of gloom and doom?”

He recommends that policy makers foster a cognitive shift to a “solarcentric” worldview: the promise of an economic future of abundance through utilization of the virtually limitless resources of the Moon, Asteroids, and of the entire solar system.  An example provided is to harvest the resources of the asteroid Psyche which holds a billion times the minable metal on Earth, and to which NASA had planned on launching an exploratory mission this year but had to delay it due to late delivery of the spacecraft’s flight software and testing equipment.

Artist rendering of NASA’s Psyche Mission spacecraft.  Credits: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin

Back to the RFI, Wingo has four recommendations that will open up the solar system to economic development and address many of the problems that cause the geocentrists despair. 

First, we should make the Artemis moon landings permanent outposts with year long stays as opposed to 6 day “camping trips”. This should be possible with resupply missions by SpaceX as they ramp up Starship launch rates (assuming the launch vehicle and lander are validated in the same timeframe, which seems reasonable). Next, we need power and lots of it – on the order of megawatts.  This should be infrastructure put in place by the government to support commerce on the Moon.  By leveraging existing electrical power standards and production techniques, large scale solar power facilities could be mass produced at low cost on Earth and shipped to the moon before the capability of in situ utilization of lunar resources is established.  Some companies such as TransAstra already have preliminary designs for solar power facilities on the Moon.

Which brings us to ISRU.  The next recommendation is to JUST DO IT.  This technology is fairly straightforward and could be used to split oxygen from metal oxides abundant in lunar regolith to source air and steel.  Pioneer Astronautics is already developing what they call Moon to Mars Oxygen and Steel Technology (MMOST) for just this application.

Conceptual illustration of the Lunar OXygen In-situ Experiment (LOXIE) Production Prototype. Credits: Mark Berggren / Pioneer Astronautics

And lets not forget the wealth of in situ resources that could be unlocked via synthetic geology made possible by Kevin Cannon’s Pinwheel Magma Reactor.

Conceptual depiction of the Pinwheel Magma Reactor on a planetary surface in the foreground and in free space on a tether as shown in the inset. Credits: Kevin Cannon

Of course there is water everywhere in the solar system just waiting to be harvested for fuel and life support in a water-based economy.

Illustration of an ice extraction concept for collection of water on the Moon. Credits: George Sowers / Colorado School of Mines

Wingo’s final recommendation is industrialization of the Moon in preparation for the settlement of Mars followed by the exploration of the vast resources of the Asteroid Belt.  He makes it clear that this is more important than just a goal for NASA, which has historically focused on scientific objectives, and should therefore be a national initiative.

“…for the preservation and extension of our society and to preclude the global fight for our limited resources here.”

With the right vision afforded by this approach and strong leadership leading to its implementation, Wingo lays out a prediction of how the next fifty years could unfold. By 2030 over ten megawatts of power generation could be emplaced on the Moon which would enable propellant production from the pyrolysis of metal oxides and hydrogen production from lunar water.  This capability allows refueling of Starship obviating the need to loft propellent from Earth and thereby lowering the costs of a human landing system to service lunar facilities.  From there the cislunar economy would begin to skyrocket.

The 2040s see a sustainable 25% annual growth in the lunar economy with a burgeoning Aldrin Cycler business to support asteroid mining and over 1000 people living on the Moon.

By the 2050s, fusion reactors provide power and propulsion while the first Ceres settlement has been established providing minerals to support the Martian colonies.

“The sky is no longer the limit”

By sowing these first seeds of infrastructure a vibrant cislunar economy will enable sustainable settlement across the solar system. A solarcentric development mythology may be just what is needed to become a spacefaring civilization.

Artist’s concept of an O’Neill space colony. Credits: Rachel Silverman / Blue Origin

Planetoid Mines completes development of ISRU Tech

Planetoid Mines Corporation’s ISRU off-world extractor. Credits: Planetoid Mines Corporation

A New Mexico based startup called Planetoid Mines Corporation has just completed development of an autonomous robotic platform for mining the moon or other extraterrestrial worlds via in situ resource utilization. The system features a multi-head icy regolith extractor that feeds directly into an ore beneficiation tool, the output of which is channeled to an onboard oven that extrudes 3D printed structures via a robotic arm.

Through a post on his LinkedIn profile, CEO Kevin DuPriest says “Our self-contained system provides end-to-end continuous mining operations with multiple excavator heads, mineral concentration through beneficiation, a pyrometallurgy oven and thermal printing head. Using lunar surface minerals the system can print landing pads, extrude fused quartz rods, large antenna arrays, etc. ISRU platform designed to fit most lunar landers.”

The company’s website highlights a solid oxide hydrogen fuel cell and steam electrolysis stack that can split lunar water into hydrogen and oxygen for rocket fuel while generating heat and power on-demand. There is even potential dual use benefits of the ISRU architecture for mining on Earth. The website intimates the possibility of a mission to the Moon by 2022, but provides no further details on suppliers of launch or lander services.

In a recent Tweet DuPriest announced the company is considering going public through a Special Purpose Acquisition Corporation (SPAC) and looking for partners to assist with cislunar infrastructure and logistics for mission operations.

NASA’s measurement plan for a lunar water reserve

Diagram depicting NASA’s Lunar Water ISRU Measurement Study (LWIMS). Credits: NASA

NASA just published a Technical Memorandum on its Lunar Water ISRU Measurement Study (LWIMS). The TM describes the establishment of a measurement plan for identification and characterization of a water reserve on the Moon. This program would support the Artemis program to achieve a sustainable lunar presence by 2028.

Three primary data inputs feed information into the system. First, predictive modeling provides a ‘water favorability’ index to map out locations on the Moon with water ice potential. This algorithm is fed data by orbital measurements providing information on a regional scale. It is critical that this orbital data is interpreted properly for water-favorable sites on the Moon. To ensure accuracy, lunar landers will take surface measurements in a series of three phases: mobile reconnaissance for validation of the predictive model, focused exploratory missions to verify water’s presence and final reserve mapping to inform an ISRU ice mining plant by 2028.

ESA envisions a space resource utilization program for the coming nascent space economy

Diagram depicting ESA’s program for space resource utilization such as harvesting lunar water and oxygen for rocket propellant and space manufacturing. Credits: Angeliki Kapoglou, ESA

A proposal submitted by ESA’s Angeliki Kapoglou, has been posted on the ESA website that defines a process for evaluating maturing technologies by the European space agency in cooperation with companies in the region. Called ESA Space Resources Utilisation Program, the proposal identifies the potential for a commercial market for water, oxygen and other products sourced from the Moon within the next decade as multiple space agencies plan for humans to return to the lunar surface. The program will position European countries and businesses to be major players in economic activities such as off-Earth propellant production, on-orbit refueling, autonomous in-space manufacturing using resources harvested from space, and robust construction on the lunar surface to support a sustained human presence.

The mission statement of the program is:

“Enable Europe through ESA to be well placed to benefit from the identification, acquisition, and development of space resources with important benefits for society on Earth. SRU will also provide an important reduction on the cost of other space missions…

We propose a series of small and rapid mission activities, to build capability and demonstrate key technologies for the utilisation of space resources. This will ensure that Europe is positioned for the Solar System gold rush that is coming and which will likely kick start with a cislunar economy with benefits for Earth. This constitutes a timely response to a rapidly evolving scenario for space resources.”

The program is expected to cost 100 million € and deliver key findings before the end of 2022.

2020 NIAC Symposium showcases cutting edge technology for space development

Illustration of SPEAR (Swarm Probe Enabling ATEG Reactor), an affordable nuclear electric propulsion spacecraft using a custom designed fission reactor. Credits: Troy Howe, Howe Industries LLC

The 2020 NASA Innovative Advanced Concepts (NIAC) Symposium just rapped up it’s virtual event. The NAIC Program supports early studies of visionary concepts in space and aeronautics that develop and assess revolutionary, yet credible, aerospace architecture, mission, and system concepts. These studies showcase ideas that will enable far-term capabilities, and spawn exciting innovations to radically improve aerospace exploration, science, and operations.

There were a wealth of new ideas presented at this year’s meeting with Phase I, II, and III posters and presentations available as PDFs on the NAIC Symposium website. To give you a taste, above is an illustration of Howe Industries’ Phase II concept for a small, affordable nuclear electric propulsion spacecraft using a custom designed fission reactor with advanced thermoelectric generators (ATEGs). The innovative design would allow private entities, universities, or other interested parties to carry out missions across the solar system at relatively low cost.

Another favorite of ours was Trans Astronautica’s Mini Bee asteroid capture concept in which they will deploy, then chase down and “swallow” a test object in LEO as a precursor to an asteroid mining mission.

Illustration of Trans Astronautica Corporation’s Mini Bee spacecraft chasing down and capturing an artificial asteroid in LEO. Credits: Joel Sercel / Trans Astronautica Corporation

Some of these NIAC grants have already been covered by SSP such as Phil Metzger’s Aqua Factorem lunar water harvesting process, Masten’s instant lunar landing pad and Trans Astronautica Corporation’s Lunar Polar Propellant Mining Outpost.

We leave you with JPL’s Enceladus Vent Explorer

Illustration of Enceladus Vent Explorer concept. Credits: Masahiro (Hiro) Ono / Jet Propulsion Laboratory

Paragon selected by NASA to develop lunar water collection and purification system

Image Credit: NASA’s Goddard Spaceflight Center

Paragon Space Development Corporation, a subcontractor for Dynetics which is one of the three companies NASA has selected to begin work on designs for human lunar landers, was just awarded a Small Business Innovation Research (SBIR) Phase I grant to develop its ISRU Collector of Ice in a Cold Lunar Environment or ICICLE. The system will use a cold trap for collecting and purifying water from ice mining the permanently shadowed regions of the lunar poles. The purification and collection of lunar water is a critical step in generating in-situ propellant, breathable oxygen, and potable water for space settlements and the cislunar economy.

Accessibility of lunar ice

In a recent thread on Twitter referring to a forthcoming paper, Kevin M. Cannon calculates the optimum path for rover access down into the cold traps in lunar craters at the Moon’s poles. The entire dataset including an ice prospecting guide is available on Cannon’s website which is now linked on our In Situ Resource Utilization page

Lowest-energy, lowest-distance and lowest-slope paths from illuminated, flat staging areas outside the cold trap to a target within it. Image and text credits: Kevin Cannon via Twitter

Let there be Lunar Flashlight

NASA’s Jet Propulsion Laboratory is developing a CubeSat that will utilize near-infrared lasers and an onboard spectrometer to prospect for ice in the permanently shadowed craters at the Moon’s south pole. The suitcase size spacecraft will inform future Artemis missions on where to begin in-situ resource utilization of this valuable commodity for space settlement

This artist’s concept shows the Lunar Flashlight spacecraft, a six-unit CubeSat designed to search for ice on the Moon’s surface using special lasers. The spacecraft will use its near-infrared lasers to shine light into shaded polar regions on the Moon, while an onboard reflectometer will measure surface reflection and composition. Image credit: NASA/JPL-Caltech

Breakthrough mission architecture for mining lunar polar ice

Joel Sercel of Trans Astronautica Corporation was recently awarded a Phase II NIAC grant for a Lunar Polar Mining Outpost (LPMO) that promises to greatly reduce the cost of commercializing propellant production on the Moon. The system utilizes two patented innovative concepts for generating power and processing regolith. The first invention is a several meters tall solar reflector tower called a Sun Flower™ to gather sunlight at the permanently illuminated areas near the poles and reflect it down to megawatt level solar arrays near the outpost. The second concept called Radiant Gas Dynamic (RGD) mining combines microwave and infrared radiation to sublimate ice out from the regolith for storage in cryotraps on electric powered rovers. The outpost elements are designed to be delivered to the lunar surface using Blue Origin’s New Glenn rocket and Blue Moon lander.

Sercel states that “…LGMO promises to vastly reduce the cost of establishing and maintaining a sizable lunar polar outpost that can serve first as a field station for NASA astronauts exploring the Moon, and then as the beachhead for American lunar industrialization, starting with fulfilling commercial plans for a lunar hotel for tourists”

Diagram of Lunar Polar Propellant Mining Outpost (LPMO) concept
Credits: Joel Sercel

Easy extraction of lunar water with Aqua Factorem

Philip Metzger of the University of Central Florida (UCF) has just been awarded a Phase I NIAC grant to investigate an innovative water harvesting process that will be cheaper then conventional methods.

“This simple architecture requires the minimum number of in-space elements, and notably does not require an in-space propellant depot, so it provides the lowest cost and lowest risk startup for a commercial operation. The study will also test the innovative Aqua Factorem process through laboratory experiments, and this will produce basic insights into the handling of lunar resources”

Revised 6 May 2020: UCF/Today has an update on this story.

An illustration of what the UCF developed process could look like on the moon. Credit: NASA and Jessica Woodward/UCF