Spinning fiber from lunar regolith

A European student team call Ampex 20 is working on a project called MoonFiber which aims to automate production of glass fibers on the Moon. Applications include fabrication of composites, thermal insulation, fabrics and other products requiring woven material. Products made in-situ from local materials significantly reduce costs by not having to transport them from Earth.

Spinning unit capable to withstand the Moon environmental conditions. Image credit: Ampex 20

The MoonFiber project is being conducted by RWTH Aachen University in Germany. A teaser video is available here.

Let there be Lunar Flashlight

NASA’s Jet Propulsion Laboratory is developing a CubeSat that will utilize near-infrared lasers and an onboard spectrometer to prospect for ice in the permanently shadowed craters at the Moon’s south pole. The suitcase size spacecraft will inform future Artemis missions on where to begin in-situ resource utilization of this valuable commodity for space settlement

This artist’s concept shows the Lunar Flashlight spacecraft, a six-unit CubeSat designed to search for ice on the Moon’s surface using special lasers. The spacecraft will use its near-infrared lasers to shine light into shaded polar regions on the Moon, while an onboard reflectometer will measure surface reflection and composition. Image credit: NASA/JPL-Caltech

Easy extraction of lunar water with Aqua Factorem

Philip Metzger of the University of Central Florida (UCF) has just been awarded a Phase I NIAC grant to investigate an innovative water harvesting process that will be cheaper then conventional methods.

“This simple architecture requires the minimum number of in-space elements, and notably does not require an in-space propellant depot, so it provides the lowest cost and lowest risk startup for a commercial operation. The study will also test the innovative Aqua Factorem process through laboratory experiments, and this will produce basic insights into the handling of lunar resources”

Revised 6 May 2020: UCF/Today has an update on this story.

An illustration of what the UCF developed process could look like on the moon. Credit: NASA and Jessica Woodward/UCF