The impact of the Gravity Prescription on the future of space settlement

Artist rendering of a family living in a rotating free-space settlement based on the Kalpana Two design, with a length of 110m and diameter of 125m. Credits: Bryan Versteeg / Spacehabs.com

This post summarizes my upcoming talk for the Living in Space Track at ISDC 2024 taking place in Los Angeles May 23 – 26. The presentation is a distillation of several posts on the Gravity Prescription about which I’ve written over the years.

Lets start with a couple of basic definitions. First, what exactly is a space settlement? The National Space Society defined the term with much detail in an explainer by Dale L. Skran back in 2019. I’ve extracted this excerpt with bolded emphasis added:

Space Settlement is defined as: 

​“… a habitation in space or on a celestial body where families live on a permanent basis, and that engages in commercial activity which enables the settlement to grow over time, with the goal of becoming economically and biologically self-sustaining …”

​The point here is that people will want to have children wherever their families put down roots in space communities. Yes, a “settlement” could be permanent and perhaps inhabited by adults that live out the rest of there lives there, such as in a retirement community. But these are not biologically self-sustaining in the sense that settlers have offspring that are conceived, born and raised there living out healthy lives over multiple generations.

Next we should explain what is meant by the Gravity Prescription (GRx). First coined by Dr. Jim Logan, the term refers to the minimum “dosing” of gravity (level and duration of exposure) to enable healthy conception, gestation, birth and normal, viable development to adulthood as a human being…over multiple generations. It should be noted that the GRx can be broken down into at least three components: the levels needed for pregnancy (conception through birth), early child development, and adulthood. The focus of this discussion is primarily on the GRx for reproduction.

We should also posit some basic assumptions. First, with the exception of the GRx, all challenges expected for establishment of deep space settlements can be solved with engineering solutions (e.g. radiation protection, life support, power generation, etc…)​. The one factor that cannot be easily changed impacting human physiology after millions of year of evolution on Earth is gravity. We may find it difficult or even impossible to stay “healthy enough” under hypogravity conditions on the Moon or Mars, assuming all other human factors are dealt with in habitat design.

Lets dive into what we know and don’t know about the GRx. Several decades of human spaceflight have produced an abundance of data on the deleterious effects of microgravity on human physiology, not the least of which are serious reduction in bone and muscle mass, ocular changes, and weakening of the immune system – there are many more. So we know microgravity is not good for human health after long stays. Clearly, having babies under these conditions would not be ethical or conducive for long term settlement.

The first studies carried out on mammalian reproduction in microgravity took place in the early 1990s aboard the Space Shuttle in a couple of experiments on STS-66 and STS-70. 10 pregnant rats were launched at midpregnancy (9 days and 11 days, respectively) on each flight and landed close to the (22 day) term. The rat pups were born 2 days after landing and histology of their brain tissue found spaceflight induced abnormalities in brain development in 70% of the offspring.

It was not until 2017 that the first mammalian study of rodents with artificial gravity was performed on the ISS. Although not focused on reproduction, the Japan Aerospace Exploration Agency (JAXA) performed a mouse experiment in their Multiple Artificial-gravity Research System (MARS) centrifuge comparing the impact of microgravity to 1g of spin gravity. ​The results provided the first experimental evidence that mice exposed to 1g of artificial gravity maintained the same bone density and muscle weight as mice in a ground control group while those in microgravity had significant reductions.

Diagram depicting an overview of the first JAXA Mouse Project in the MARS centrifuge with photos of the experiment on the ISS. Credits: Dai Shiba et al. / Nature. http://creativecommons.org/licenses/by/4.0/

In 2019 JAXA carried out a similar study in the MARS centrifuge adding lunar gravity levels to the mix. This study found that there were some benefits to the mice exposed to 1/6g in that Moon gravity helped mitigate muscle atrophy, but it did not prevent changes in muscle fiber or gene expression​.

Just last year, a team led by Dr. Mary Bouxsein at Harvard Medical School conducted another adult mouse study on the MARS centrifuge comparing microgravity, .33g, .67g and 1g. They found that hind quarter muscle strength increased commensurate with the level artificial gravity concluding, not surprisingly, that spaceflight induced atrophy can be mitigated with centrifucation. The results were reported at the American Society for Gravitational and Space Research last November.​

Returning to mammalian reproduction in space, an interesting result was reported last year in the journal Cell from an experiment by Japanese scientists at the University of Yamanashi carried out on the ISS in 2019. The team, headed up by Teruhiko Wakayama, devised a way to freeze mouse embryos post conception and launch them into space where they were thawed by astronauts and allowed to develop in microgravity. Control samples were cultured in 1g artificial gravity on the ISS and Earth normal gravity on the ground. The mouse embryos developed into blastocysts and showed evidence of cell differentiation/gene expression in microgravity after 4 days​. The researchers claimed that the results indicated that “Mammals can thrive in space”. This conclusion really can’t be substantiated without further research.

Which brings us to several unknowns about reproduction in space. SSP has explored this topic in depth through an interview with Alex Layendecker, Director of the Astrosexological Research Institute. Yet to be studied in depth is (a) conception, including proper transport of a zygote through the fallopian tube to implantation in the uterus. Less gravity may increase the likelihood of ectopic pregnancy which is fatal for the fetus and could endanger the life of the mother; (b) full gestation through all stages of embryo development to birth​; and (c) early child development and maturation to adulthood in hypogravity​. All these stages of mammalian reproduction need to be validated through ethical clinical studies on rodents progressing to higher primate animal models before humans can know if having children in lower gravity conditions on the Moon or Mars will be healthy and sustainable over multiple generations.

AI generated image of an expectant mother with her developing fetus in Earth orbit after mammalian reproduction has been validated via higher animal models through all stages of pregnancy for a safe level of gravity. An appropriate level of radiation shielding would also be required and is not shown in this illustration. Credit: DALL-E-3

Some space advocates for communities on the Moon or Mars have downplayed the importance of determining the GRx for reproduction with the logic that a fetus in a woman’s uterus on Earth is in neutral buoyancy and thus is essentially weightless. Therefore, why does gravity matter? ​ I discussed this question with Dr. Layendecker and he had the following observations paraphrased here: True, gravity may have less of an impact in the first trimester. But on the cellular level, cytoskeletal development and proper formation/organization of cells may be impacted from conception to birth​. Gravity helps orient the baby for delivery in the last trimester​ and keeps the mother’s uterine muscles strong for contractions/movement of the baby through the birth canal​. There are many unknowns on what level of gravity is sufficient for normal development from conception to adulthood.

Why does all this matter? Ethically determining the right level of gravity for healthy reproduction and child development will inform where families can safely settle space​. The available surface gravities of bodies where we can establish communities in space cluster near Earth, Mars and Moon levels​. These are our only GRx options ​on solar system bodies.

Gravity level clustering of solar system bodies available for space settlement. Credit: Joe Carroll

The problem is that we don’t yet know whether we can remain healthy enough on bodies with gravity equivalent to that on the Moon or Mars, so we can’t select realistic human destinations or formulate detailed plans until we acquire this knowledge​. Of course we can always build rotating settlements in free space with artificial gravity equivalent to that on Earth. Understanding the importance of the GRx and determining its value could change the strategy of space development in terms of both engineering and policy decisions. The longer we delay, the higher the opportunity costs in terms of lost time from failure to act​.

What are these opportunity cost lost opportunities​? Clearly, at the top of Elon Musk’s list is “Plan B” for humanity, i.e. a second home in case of cataclysmic disaster such as climate change, nuclear war, etc. This drives his sense of urgency. From Gerard K. O’Neill’s vision in The High Frontier, virtually unlimited resources in space could end hunger and poverty, provide high quality living space for rapidly growing populations​, achieve population control without war, famine, or dictatorships​. And finally, increase freedom and the range of options for all people​.

If humans can’t have babies in less than Earth’s gravity then the Moon and Mars may be a bust for long term (biologically sustainable) space settlement.​ There will be no biologically sustainable cities with millions of people on other worlds unless they can raise families there​.

Spin gravity rotating space settlements providing 1g artificial gravity may be the only alternative​. If Elon Musk knew that the people he wants to send to Mars can’t have children there, would he change his plans for a self-sustaining colony on that planet?​ Having and raising children is obviously important to him. As Walter Isaacson wrote in his recent biography of Musk, “He feared that declining birthrates were a threat to the long-term survival of human consciousness.”

So how could he determine the GRx quickly? One solution would be to fund a partial gravity facility in low Earth orbit to run ethical experiments on mammalian reproduction in hypogravity. Joe Carroll has been refining a proposal for such a facility, a dual dumbbell Moon/Mars low gravity laboratory which SSP has covered, that could also be marketed as a tourist destination. Spinning at 1.5 rpm, the station would be constructed from a combination of Starship payload-sized habitats tethered by airbeams allowing shirt sleeve access to different gravity levels​. Visitors would be ferried to the facility in Dragon capsules and could experience 3 gravity levels with various tourist attractions​. The concept would be faster, cheaper, safer and better than establishing equivalent bases on the Moon or Mars to quickly learn about the GRx​. The facility would be tended by crews at both ends that live & collect health data for up to a year or more​. And of course, ethical experiments on the GRx for mammalian reproduction would be carried out, first on rodents and then progressing to higher primates if successful.

Left: Conceptual illustration depicting a LEO Moon-Mars dumbbell partial gravity facility constructed from Starship payload-sized habitats tethered by airbeams and serviced by Dragon capsules. Rectangular solar arrays deploy by hanging at either end as spin is initiated via thrusters at Mars module. Center: Image of an inflated airbeam demonstration. Right: diagram of an airbeam stowed for transport and after deployment. Credit: Joe Carroll

What if these experiments determine that having children in lower gravity is not possible and our only path forward are free-space rotating settlements? Physics and human physiology require that they be large enough for settlers to tolerate a 1g spin rate to prevent disorientation. As originally envisioned by O’Neill, the diameter of his Island One space settlement would be about 500 meters.

Conceptual illustration of an Island One space settlement. The living space sphere is sized at about 500m in diameter. Credits: Rick Guidice / NASA

As originally proposed, these settlements would be located outside the Earth’s magnetic field at the L5 Earth-Moon Lagrange Point necessitating that they be shielded with enormous amounts of lunar regolith to protect occupants from radiation. Their construction requires significant technology development and infrastructure (e.g. mass drivers on the Moon, automated assembly in space, advances in robotics, power sources, etc…)​. Much of this will eventually be done anyway as space development progresses…however, knowing the GRx (if it is equal to 1g) may foster a sense of urgency​.

Some may take the alternative viewpoint that if we know that Earth’s gravity works just fine we could proceed directly to free-space settlements if we could overcome the mass problem. This is the approach Al Globus and Tom Marotta took in their book The High Frontier: An Easier Way with Kalpana One​, a 450m diameter cylindrical rotating free-space settlement located in equatorial low Earth orbit (ELEO) protected by our planet’s magnetic field, thereby reducing the mass significantly because there would be far less need for heavy radiation shielding.

Artist impression of Kalpana One rotating free-space settlement located in equatorial low Earth orbit. Credits: Bryan Versteeg / Spacehabs.com

But there may be an even easier way. Kasper Kubica has proposed a 10 year roadmap to the $10M condo in ELEO based on Kalpana Two, a scaled down version of the orbital settlement described by Al Globus in a 2017 Space Review article.

Artist rendering of the inside of a rotating free-space settlement based on the Kalpana Two design, with a length of 110m and diameter of 125m. Credits: Bryan Versteeg / Spacehabs.com

Even though these communities would be lower mass, they will still require significant increases in launch rates to place the needed materials in LEO, especially near the equator​. Offshore spaceports, like those under development by The Spaceport Company, could play a significant role​ in this infrastructure. Legislation providing financial incentives to municipalities to build spaceports would be helpful, such as The Secure U.S. Leadership in Space Act of 2024 introduced in Congress last month. The new law (not yet taken up in the Senate) would amend the IRS Code to allow spaceports to issue tax-exempt Muni bonds for infrastructure improvements.

Wouldn’t orbital debris present a hazard for settlements in ELEO?​ Definitely yes, and the National Space Society is shaping policy in this area. The best approach is to emphasize “light touch” regulatory reform on salvage rights, with protection and indemnity of the space industry to encourage recycling and debris removal.​ Joe Carroll has suggested a market-based approach that would impose parking fees for high value orbits, which would fund a bounty system for debris removal. This system would incentivize companies like CisLunar Industries, Neumann Space and Benchmark Space Systems, firms that are developing space-based processes to recycle orbital debris into useful commodities such as fuel and structural components.

Further down the road in technology development and deeper into space, advances in artificial intelligence and robotics will enable autonomous conversion of asteroids into rotating space settlements, as described by David Jensen in a paper uploaded to arXiv last year.​ This approach significantly reduces launch costs by leveraging in situ resource utilization. Initially, small numbers of “seed” tool maker robots are launched to a target asteroid​ along with supplemental “vitamins” of components like microprocessors that cannot be easily fabricated until technology progresses, to complete the machines. These robotic replicators use asteroid materials to make copies of themselves and other structural materials eventually building out a rotating space settlement. As the technology improves, the machines eventually become fully self-replicating, no longer requiring supplemental shipments from Earth.

Artist impression of a rotating space settlement constructed from asteroid materials. Credits: Bryan Versteeg, spacehabs.com

Leveraging AI to enable robots to build space settlements removes humans from the loop initially, eliminating risk to their health from exposure to radiation and microgravity​. Send it the robot home builders – families then safely move in later. There are virtually unlimited supplies in the asteroid belt to provide feedstock to construct thousands of such communities.

Artist impression of the interior of Stanford Torus free-space settlement. Advances in artificial intelligence and robotics will enable autonomous self replicating machines that could build thousands of such communities from asteroid material. Credits: Don Davis / NASA

If rotating space settlements with Earth-normal gravity become the preferred choice for off-Earth communities, where would be the best location, the prime real estate of the solar system? Jim Logan has identified the perfect place with his Essential Seven Settlement Criteria.

  • Low Delta-V​ – enabling easy access with a minimum of energy
  • Lots of RESOURCES​ … obviously!
  • Little or No GRAVITY WELL​ – half way to anywhere in the solar system
  • At or Near Earth Normal GRAVITY for​
    People, Plants and Animals ​- like what evolved on Earth
  • Natural Passive 24/7 RADIATION Protection​ – for healthy living
  • Permit Large Redundant Ecosystem(s)​ – for sustenance and life support
  • Staging Area for Exploration and Expansion​
    (including frequent, recurrent launch windows)​

Using this criteria, Logan identified Deimos, the outermost moon of Mars, as the ideal location. As discussed above, AI and robotic mining technology improvements will enable autonomous boring machines to drill a 15km long core through this body with a diameter around 500 meters – sized for an Island One space settlement to fit perfectly.

Conceptual illustration of a 500 meter wide by 15km long core bored through Deimos. Credit: Jim Logan

In fact, 11 Island One space colonies (minus the mirrors) strung end to end through this tunnel would provide sea level radiation protection and Earth normal artificial gravity for thousands of healthy settlers.

Left: Artist impression of an Island One space settlement. Credits: Rick Guidice / NASA. Right: To scale depiction of 11 Island One space settlements strung end-to-end in a cored out tunnel through Deimos providing sea level radiation protection and Earth normal artificial gravity. Credit: Jim Logan

In conclusion, the GRx for reproduction will inform where biologically self-sustaining healthy communities can be established in space. If we find that the GRx is equal to Earth’s normal level, free-space settlements with artificial gravity will be the safest and healthiness solution for humans to live and thrive throughout the solar system. The sooner we determined the GRx the better, for current plans for settling the Moon or Mars may need to be altered to consider rotating space colonies, which will require significant infrastructure development and regulatory reform​. Alternatively, since we know Earth’s gravity works just fine, we may choose to skip determination of the GRx and start small with Kalpana in low Earth orbit. Eventually, artificial intelligence will enable safe, autonomous self-assembly of space settlements from asteroids. The interior of Deimos would be the perfect place to build safe, healthy and biologically self-sustaining space settlements.

Minerva Space Settlement and University of Space Exploration

Conceptual illustration of the Minerva Space Settlement in orbit around Jupiter’s moon Ganymede. Credits: Minerva Project Team

Space Settlement Progress typically features the latest advancements in technology that are enabling the settlement of space.  This post will be a little different.  When attending the International Space Development Conference last May I was impressed by a team of students from Highschool Colegiul National Andrei Saguna in Romania, who had conceived of a space settlement in orbit around Jupiter’s satellite Ganymede which they call Minerva.  The project was an entry in the National Space Societies’ Space Settlement Contest, and for which they won a second place award for 9th graders.  While admiring their poster I was approached by Maria Vasilescu, who proudly described their project and agreed to collaborate with me on this post. She spoke perfect English, shared marketing materials (key chains, buttons and bookmarks with QR codes linking to their website) and explained that the primary purpose of Minerva would be a deep space location for a University of Space Exploration.  I was intrigued by the concept and was struck by Maria and her teammates’ enthusiastic vision of humanity’s future in space.  I wanted to know more about what motivated this group of teenagers to come together and create such an imaginative project, as youths like them will be future pioneers on the High Frontier.  Maria agreed to coordinate with her team on an interview via email about Minerva.

The Minerva Project Team and their poster session at ISDC 2023, a second prize winner for 9th graders of the NSS Space Settlement Contest. Credits: Minerva Project Team: clockwise from lower right: Bodean Mircea-Sorin, Ana Radus, Andrei Ioan Prunea, Alexandra Nica, Alexandra Maria Nemes, Maria Vasilescu

SSP: How did the team come up with this Minerva concept?

Minerva: We took inspiration from our school which gave us a lot of opportunities to which we owe a lot and we wanted to build such a university in the final frontier.

SSP: You mentioned stumbling across some obstacles during your journey but sticking together by motivating each other.  Is this an experience you feel comfortable sharing?

Minerva: One of the hardest things was to think about all the aspects that go into making a space settlement as ninth graders, such as the form [Forum on the website], which was decided in the last week, or the economical part. But we managed to meet often and brainstorm to come up with better ideas.

SSP: You said that the project helped you discover your true selves. Can you explain how this came about?

Minerva: We developed ourselves and our passions and we found out what we like because it covers a broad area of subjects beyond science. We managed to see by which area we are drawn to and enjoy actually researching.

SSP: You’ve stated that one of the reasons for building Minerva is to invent new lifestyles different from those that exist on Earth. How do you envision lifestyles changing in space?

Minerva: The university can prepare you for life in space, which will be an important part in the humans’ future, therefore we don’t want to invent new lifestyles, but incorporate space in the ones that already exist.

SSP: You’ve proposed auctioning a Minerva NFT to fund your efforts and future experiments.  Would this be the sole source of financing for the project, and will it be sufficient?  What about simply charging tuition for the USE?

Minerva: Everything on our settlement is given and made by us for the people so they don’t need to have money to buy material things. And because we have worked to make almost everything renewable and green, the funds MinervaNFT will bring are more than sufficient for everything else. And as for tuition, we feel like putting students through an exam such as the one that defines their attendance to USE is stressful enough as it is. However, the students will need to pay for the transport from Earth to the settlement.

SSP: There does not appear to be any trade or economic activity on Minerva, only academic studies. Students may choose to return to Earth or stay on the space station after they complete their studies. If they stay, have you considered the possibility of graduates developing and marketing other industries such as software development, robotics, mining water from Ganymede as rocket fuel, intellectual property on life support systems, or many other potential industries that could arise from scientific innovation that would take place on a space settlement? Or would this be totally an academic institution?

Minerva: It is not a totally academic institution because we have two thirds of the ship which will be occupied by students that remained on the settlement. But here, you don’t need money, everything being provided by us, so people don’t work for money, they work to occupy time, for enjoyment. If they do develop other industries, it will be fully for the greater good of humanity and the future of our kind, not for money.

SSP: The location chosen for Minerva is very challenging from an engineering perspective.  Although Ganymede is not deep in Jupiter’s magnetosphere, and has its own magnetic field which could help mitigate exposure, the location will still have high levels of radiation if unprotected, which complicates the design because much more mass is needed to provide adequate shielding to be safe for humans.  In addition, travel times to Jupiter are quite long even with improved propulsion which you’ve indicated would be as high as four years for students wanting to make the journey.  Finally, solar energy at Jupiter’s remote distance from the sun requires that photovoltaic arrays be enormous to provide sufficient energy. A good compromise might be the asteroid Ceres, which is believed to be 25% water and does not have a magnetic field generating high radiation like what would be experienced at Jupiter.  Others have proposed this asteroid as a good destination for space settlement.  Why not locate the settlement in a more accessible and hospitable environment that might reduce costs? 

Minerva: The main reason we chose such a far away location is precisely because we want to explore as much as possible of the cosmos. It’s not that we don’t want a closer location, it’s just that we know very little about Jupiter and its surrounding moons and further and this university can offer humanity an opportunity to explore it and send the research back to Earth. At the same time, we have taken the radiation into consideration and just how today’s spaceships have protection against it, so how [sic] our settlement, but ten times more efficient.

SSP: The sources of power for Minerva include solar arrays and nuclear fission, but you excluded fusion energy because it is currently experimental.  By the time it will be technologically possible to travel to Jupiter and establish infrastructure that far out in the solar system, we will have developed fusion energy for use on Earth as well as in space.  The preliminary design work for a Direct Fusion Drive for rapid transit to the outer planets has been started by Princeton Satellite Systems and the Fusion Industry Association just came out with their third annual report stating that the industry has now attracted over $6 billion in investment.  When it is feasible to begin work on Minerva, fusion power sources will likely be available. Will you be updating your project plan as new technologies become available? 

Minerva: Of course, we are sure that many aspects of our settlement can be improved by future developments in science, engineering and many other fields. As much as possible, we will incorporate them into our settlement. As mentioned in our paper, when talking about technological advances that may happen, we have to keep up with innovation and incorporate them to help us fulfill every need when travelling to space.

SSP: You raised the concern that Earth is approaching a major crisis with population growth putting a strain on Earth’s vital resources.  You also said that the purpose of the space community is to sustain humanity if Earth’s environment became unfavorable for life.  In selecting the location of Minerva, when considering Mars and its orbital distance, you said that even though it fulfills most of your requirements “…the disadvantage of Mars its it proximity to Earth…” and it “…is too close to our planet in order for us to choose it as the proper placement for the spacecraft.”  Why must Minerva be distant from Earth if the planet is in crisis in the future and why isn’t the orbit of Mars, at 56 million kilometers, considered not far enough away?

Minerva: Mars wasn’t a viable option because, as we have stated before, the purpose of the USE is to gather information and scientific news that can only be found in the farther cosmos. We already know a lot about Mars and planets in close proximity to Earth, we want to venture further, discover and experiment with more than we already have.

SSP: Some surveys say that young people live in fear of the future due to climate change.  Many media outlets amplify this doom and gloom.  However, some economists point out that using the United Nation’s own data from the Intergovernmental Panel on Climate Change, with the predicted increase in temperature by the year 2100, global GDP will be reduced by only 4% to deal with climate related impacts.  Although it is clear that we should eventually reduce our dependance on fossil fuels this is not an existential threat.   Plus, technological innovation continues to improve efficiency in resource utilization, energy development and agriculture, enabling higher standards of living notwithstanding increasing population growth. 

The viewpoint that the Earth is in “crisis” is closely aligned with Elon Musk’s motivation, who believes it is urgent that we become a multiplanetary species, to have a “Plan B” in case of a planetwide catastrophe.  Jeff Bezos has a different perspective, that heavy industrial activity could be moved off world to preserve the Earth’s natural environment and to improve humanities’ standard of living though utilization of unlimited space resources.  

Gerard K. O’Neill saw the promise of space settlement as a way to solve Earth’s problems through the humanization of space.  He saw it as a way to end poverty for all humans, provide high-quality living space that would continue to grow robustly, to moderate population growth without war, famine, dictatorship or coercion; and to increase individual freedom.  Does your team share the same anxiety about the future as other young people: that life on Earth is doomed and therefore, we need to build Minvera as a sanctuary to preserve humanity?  Or do you see it as one among many options for space settlement to improve life on Earth and beyond, as outlined in O’Neill’s vision?

Minerva: We see Minerva as a place where people that are smart and passionate about space have a chance to make scientific discoveries that would be impossible to do on Earth. Aligned with Gerald O’Neil’s [sic] view, we believe that humans should expand into space whether it is as a Plan B or by harvesting resources from other planets or celestial objects. With the help of Minerva, the smartest children of their generation will be able to experience these scenarios and be closer to the future. We don’t see Minerva as a Plan B for humanity, students that have finished their 4 years being able to return to earth, but rather as a place where people can enjoy a stress free and enjoyable environment. Therefore Minerva is preparing smart youngsters to be able to take advantage of any of the two cases. If they choose to remain on Earth, the knowledge that they acquired while in the USE will definitely increase humanity’s survivability against the existential threats mentioned.

SSP: You’ve created a survey [what was earlier referred to as a “Form” and can be found at the “Forum” link on the Minerva website] for anyone to express their opinion about your project and the prospect of living in space.  Will you use this feedback to improve your project? 

Minerva: Maybe in the future, yes. We have encouraged people to complete the survey honestly and there’s always place for improvement for anything. And the second reason is to observe humanity’s view on such a settlement. In creating such a complex space settlement, you need to align your view with the society’s beliefs, them being the ones who will eventually populate it.

SSP: Does your team expect to remain engaged with the project as you progress in your education and after you eventually establish your careers here on Earth?

Minerva: It was certainly an experience we will treasure for a long time, but not everything has to be drawn out. I think this project took a lot of work and effort and we want to invest into something new, see this contest from as many angles as possible while we can. This project like no other can incorporate so many aspects of society from which you can discover your biggest passions. Talking to everyone in our group, we found that each one of us enjoyed a different part of the project and we believe that that was the key to our win. We were all doing something we are passionate about and therefore worked even harder for the final result. Now that we’ve learned what topics intrigue us, we can start doing even more work in that domain. We believe that this project is the perfect opportunity and will open numerous doors in any future career path. We strongly recommend this contest to anyone wondering whether they should put their effort into it or not.

Highlights from the International Space Development Conference

Conceptual illustration of Mag Mell, a rotating space settlement in the asteroid belt in orbit around Ceres – grand prize winner of the NSS Student Space Settlement Design Contest. Credits: St. Flannan’s College Space Settlement design team*

In this post I summarize a few selected presentations that stood out for me at the National Space Society’s International Space Development Conference 2022 held in Arlington, Virginia May 27-29.

First up is Mag Mel, the grand prize winner of the NSS Student Space Settlement design contest, awarded to a team* of students from St. Flannan’s College in Ireland. This concept caught my eye because it was in part inspired by Pekka Janhunen’s Ceres Megasatellite Space Settlement and leverages Bruce Damer’s SHEPHERD asteroid capture and retrieval system for harvesting building materials.

The title Mag Mell comes from Irish mythology translating to “A delightful or pleasant plain.” These young, bright space enthusiasts designed their space settlement as a pleasant place to live for up to 10,000 people. Each took turns presenting a different aspect of their design to ISDC attendees during the dinner talks on Saturday. I was struck by their optimism for the future and hopeful that they will be representing the next generation of space settlers.

Robotically 3D printed in-situ, Mag Mell would be placed in Ceres equatorial orbit and built using materials mined from that world and other bodies in the Asteroid Belt. The settlement was designed as a rotating half-cut torus with different angular rotation rates for the central hub and outer rim, featuring artificial 1G gravity and an Earth-like atmosphere. Access to the surface of the asteroid would be provided by a space elevator over 1000 km in length.


* St. Flannan’s College Space Settlement design team: Cian Pyne, Jack O’Connor, Adam Downes, Garbhán Monahan, and Naem Haq


Conceptual illustration of a habitat on Mars constructed from self-replicating greenhouses. Credits: GrowMars / Daniel Tompkins

Daniel Tompkins, an agricultural scientist and founder of GrowMars, presented his Expanding Loop concept of self replicating greenhouses which would be 3D printed in situ on the Moon or Mars (or in LEO). The process works by utilizing sunlight and local resources like water and waste CO2 from human respiration to grow algae for food with byproducts of bio-polymers as binders for 3D printing blocks from composite concretes. Tompkins has a plan for a LEO demonstration next year and envisions a facility eventually attached to the International Space Station. He calculates that a 4000kg greenhouse could be fabricated from 1 year of waste CO2 generated by four astronauts. An added bonus is that as the greenhouse expands, an excess of bioplastic output would be produced, enabling additional in-space manufacturing.

Diagram depicting GrowMars Expanding Loop algae growing process to create greenhouse blocks and byproducts such as proteins and fertilizer. Credits: GrowMars / Daniel Tompkins.

Illustration of a portion of the Spacescraper tethered ring from the Atlantis Project. Credits: Phil Swan

Phil Swan introduced the Atlantis Project, an effort to create a permanent tethered ring habitat at the limit of the Earth’s atmosphere, which he calls a Spacescraper.  The structure would be placed on a stayed bearing consisting of two concentric rings magnetically attached and levitated up to 80 km in the air.  In a white paper available on the project’s website, details of the force vectors for levitation of the device, the value proposition and the economic feasibility are described. As discussed during the talk at ISDC, potential applications include:

  • Electromagnetic launch to space
  • Carbon neutral international travel
  • Evacuated tube transit system
  • Astronomical observatories
  • Communication and internet
  • Solar energy collection for electrical power
  • Space tourism
  • High rise real estate

Phil Swan will be coming on The Space Show June 21 to provide more details.


Conceptual illustration of a Mars city design with dual centrifuges for artificial gravity. Credits: Kent Nebergall

Finally, the Chair of the Mars Society Steering committee and founder of MacroInvent Kent Nebergall, gave a presentation on Creating a Space Settlement Cambrian Explosion. That period, 540 million years ago when fossil evidence goes from just multicellular organisms to most of the phyla that exist today in only 10 million years, could be a metaphor for space settlement in our times going from extremely slow progress to a quick expansion via every possible solution. Nebergall suggests that we may be on the verge of a similar growth spurt in space settlement and proposes a roadmap to make it happen this century.

He envisions three settlement eras beginning with development of SpaceX Starship transportation infrastructure transitioning to robust cities on Mars with eventual para-terraforming of that planet. He also has plans for how to overcome some of the most challenging barriers – momentum and money. Stay tuned for more as Kent has agreed to an exclusive interview on this topic in a subsequent post on SSP as well as an appearance on The Space Show July 10th.