The emerging in-space manufacturing economy

Diagram depicting the market sectors of the nascent in-space economy. Credits: Erik Kulu / Factories in Space

Erik Kulu, a Senior Systems Engineer in the satellite industry, has a passion for emerging technologies…especially those in the in-space manufacturing field. He’s created the largest public database of companies active in the emerging in-space economy. Called Factories in Space, it tracks companies engaged in microgravity services, space resources, in-space transport services, the economies of LEO, cislunar space, the Moon and much more.

Kulu provides an overview of commercial microgravity applications for both terrestrial and in-space use. His listing and analysis of potential business ventures provides a comprehensive summary of unique profitable commodities manufactured in microgravity, including fiber optics, medical products, exotic materials and many more.

Breakdown of the in-space manufacturing sector of the space economy. Credits: Erik Kulu / Factories in Space

“This is the missing piece to speed up development for the exciting Star Trek-like future. I believe in-space manufacturing will be the kickstarter and foundation.”

In a recent industry survey examining the commercial landscape of space resources in 2021, Kulu renders a statistical breakdown of the currently evolving development stages of in-space manufacturing companies, levels of funding by market sector, timing of company founding and geographical location of the main players. His analysis shows a marked increase in the formation of companies from 2016 – 2018 dropping off over the last 3 years.

Prominent founding peak of space resource companies in 2018 with drop at end of the last decade. Credits: Erik Kulu / Factories in Space

I asked Kulu about what he thought caused the downward taper because it seemed to have started before the COVID-19 pandemic, and so was probably unrelated. He agreed, and offers this explanation:

“Primarily, I think the decline is a mix of following:

  1. There was a boom of some sorts, which has slowed down in terms of very new startups. Similar graphs [indicate the same trend] for nanosatellite, constellation and launcher companies. Funding boom is continuing though.
  2. As many of those space fields do not have obvious markets, some potential new actors might be in wait mode, because they want to see what happens financially and technically to existing companies.
  3. Startups could be in stealth mode or very early stage and as such I have not become aware of them yet. They will likely partially backfill.”

“While there was a decline, I forecast Starship and return to the Moon will kick off another wave in about 2-3 years.”

Kulu also tracks NewSpace commercial satellite constellations, small satellite rocket launchers and NewSpace funding options through his sister site NewSpace Index. But he doesn’t stop there. The world’s largest catalog of nanosatellites containing over 3200 nanosats and CubeSats can be found in his Nanosats database.

Learn more about how Erik Kulu got started tracking the in-space economy in this interview from earlier this year over on Filling Space. And be sure and tune in live to The Space Show next month when I cohost with David Livingston for his debut appearance, exact date to be determined. You can call the show and ask Erik questions directly. Check TSS Newsletter, updated weekly, for the show date once its set. This post will be updated when the schedule is finalized, so readers can check back here as well.

Planetary sunshades: are they feasible and needed to mitigate the effects of global warming?

Conceptual illustration of a planetary sunshade blocking a fraction of sunlight from reaching Earth at the L1 Lagrange point. Credits: Planetary Sunshade Foundation

The Planetary Sunshade Foundation (PSF) would answer “Yes!” to both questions. In a paper presented at the AIAA ASCEND conference in 2020 on the group’s website, the authors* lay out a well researched case on feasibility. The technology needed to build such a megastructure, envisioned to be located at the Earth-Sun L1 Lagrange point, will depend heavily on resource extraction on the Moon and Near Earth Asteroids as well as in-space manufacturing, both of which are anticipated to be mature industries by mid-century.

Building such a megastructure will be a huge undertaking and would require significant funding as well as international cooperation among world governments. PSF and many other groups (including President Joe Biden) take the position that global warming is an existential threat and therefore mitigating its effects are worth the costs. The foundation says on their website that “We have only ten years to dramatically decrease the use of fossil fuels, or be forced to respond to catastrophic global warming.” Other credentialed climate scientists interpret the same data differently disagreeing that if we don’t act now the impact will be catastrophic. They believe that a more gradual transition based on innovation and adaption would make more economic sense.

Dr. Steven Koonin, who served as Undersecretary for Science in the U.S. Department of Energy under President Obama, in his book “Unsettled” uses data from the UN Intergovernmental Panel on Climate Change to show that the impact on the U.S. economy near the end of this century due to the worst scenario of predicted global temperature rise would be minimal. Therefore, in his view the warnings of an “existential threat” are not supported by the data.

Bjorn Lomborg takes the position that rather than making an abrupt change to our economy of reducing carbon emissions to zero by mid century, which is projected to impose significant economic costs and lower standards of living, we need to ramp up our investments in green energy innovation. This would include research and development in renewable energy technology such as solar and wind power, improving battery efficiency, nuclear power and other options to more gradually migrate away from fossil fuels.

The idea of placing a sunshade at L1 to cool the planet is not new, as evidenced by a few examples listed as references in the PSF paper. One of the references published back in 2006 by Roger Angel, Professor of Astronomy and Optical Sciences at the University of Arizona, examines the “Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1)”. Angel realized that embarking on such an ambitious endeavor should only be initiated to avert serious climate change “…found to be imminent or in progress.” He concludes that “The same massive level of technology innovation and financial investment needed for the sunshade could, if also applied to renewable energy, surely yield better and permanent solutions.”

Such major undertakings among world governments are by nature political, but if agreement is eventually reached by stakeholders on the urgency to build a planetary sunshade, the option will be available to humanity in the near future should it become necessary. The planetary sunshade is technically possible with future technology advances and has the potential for other benefits. For example, if the structure is made from thin-film photovoltaics, it would be possible to collect enough solar energy to provide hundreds of terawatts of power which is many times the current needs of Earth (currently 17TW). PSF believes the sunshade megastructure “…could generate civilization-transforming energy supplies.” The authors even suggest that a toroidal colony like the one conceived in the NASA 1975 Space Settlement Design Study could be constructed nearby to house workers supporting the manufacture of the sunshade and be “…combined to create banded toroidal settlements as well, scaling linearly, depending upon the population needs of the settlement.”

___________________

* The authors ( A. Jehle, E. Scott, and R. Centers) of the paper “A Planetary Sunshade Built from Space Resources” as of last year were graduate students in the Center for Space Resources at the Colorado School of Mines in Golden, Colorado. Centers and Scott are Director and Systems Engineer, respectively on the PSF Team.