UK company aims to turn lunar soil into oxygen

Artist’s depiction of a future lunar base 3D printed from local materials. Credits: ESA/Foster + Partners

A British company called Metalysis as been funded by ESA to study their industrial-scale production of metals and alloys for application in a lunar environment. Metalysis has already demonstrated that they can extract 96% of the total oxygen content from ilmenite, a black iron-titanium oxide with a chemical composition of FeTiO3 found by Apollo astronauts to be abundant in lunar regolith. The process leaves a metallic powder alloy that can be used for in-situ 3D printing on the Moon.

In a press release last month, Metalysis states that “The project will provide an assessment to prepare and de-risk technology developments, focused towards oxygen production for propellants and life support consumables. The ability to extract oxygen on the moon is vital for future exploration and habitation, being essential for sustainable long duration activities in space. In-Situ Resource Utilisation (ISRU) will significantly reduce the payload mass that
would be needed to be launched from Earth.”

Lunar regolith beneficiation: a review of the latest research

Artist impression of a moon base. Credits: ESA

In the July Issue of Planetary and Space Science there is a summary of research on beneficiation, the process used for separation of minerals from waste in lunar regolith to prepare feedstock for chemical reactions to produce oxygen. One of the most commonly studied processes is hydrogen reduction of ilmenite (FeTiO3), a mineral abundant in the lunar maria. This type of research is critical to prepare for situ resource utilization (ISRU) needed for lunar settlements.

Benefication processes use differences in physical properties (e.g., density, electromagnetic characteristics) to manipulate materials, most commonly (especially on Earth) with water to facilitate separation. This is not practical in space environments where large scale water use will be more challenging then on Earth. On the Moon, dry techniques such as magnetic or electrostatic process are better suited to this application. The authors describe the physics behind the beneficiation process for ISRU in the lunar environment and survey the research performed thus far on these methods with interesting recommendations for further studies.