Progress on automated deployment of lunar habitats

Automated deployment sequence of a prototype lunar habitat floor plate structure using a gas inflation system. Credits: Luke Brennan

It is obvious that establishing settlements on the Moon with be difficult. It’s a harsh environment presenting many risks to the health of humans who may wish to live there including radiation, bombardment by micrometeorites, lack of breathable air, and a host of other hazards which will demand rigorous engineering solutions to design safe and livable structures. But Haym Benaroya, professor of mechanical and aerospace engineering at Rutgers University is up for the challenge. In fact, he literally wrote the book on engineering approaches to building lunar habitats. He and his students have been developing novel methods for automated deployment of structures to house future lunar explorers. These type of engineering solutions would allow deployment of large habitable structures prior to the arrival of occupants, thereby minimizing radiation exposure. SSP has had the privilege of covering one such novel approach that combines a foldable rigid framework with an inflatable dome called the Hybrid Lunar Inflatable Structure, the subject of the master’s thesis of one of the professor’s students, Rohith Dronadula.

In a recent paper in Acta Astronautica, a group of Benaroya’s students further refined this approach. Luke Brennan, coauthor on the article, provided the following remarks on progress of the design effort:

“The hybrid lunar inflatable structure (HLIS) underwent three years of development by student teams at Rutgers University to go from an initial concept laid out by Dronadula and Benaroya [2021] to a functioning proof of concept. The design combines safety elements found in rigid structures with the large habitable volumes offered by inflatable designs through an inflatable membrane attached to the rigid center column. The baseplates are folded during transportation to better fit within rocket payloads and can be deployed autonomously once on the lunar surface. When unfolded, the structure expands 2.25x in diameter, representing a 5x increase in floor area.

“Manufacturing constraints set the foundation for the design process. Ensuring an autonomous deployment is key, as the threat of radiation posed to astronauts on the lunar surface restricts them from being able to reasonably assist in constructing the structure. A novel deployment mechanism was introduced, which used a dynamic O-ring to displace and initiate baseplate deployment and membrane inflation. Compressed air will need to be included in habitats regardless of the deployment strategy, so the deployment utilized this by triggering deployment when the gas is released. The internal pressure acts on the component containing the dynamic O-ring, lifting it. The displaced component is attached to the top cap, which contains the baseplates when stowed, and releases the baseplates when lifted. The full displacement of the O-ring exposes an air passageway through the center column, allowing gas to escape into the membrane.

“The first image [above] demonstrates this working concept, where generic SodaStream bottles were used inside the center column with a solenoid to toggle the CO2 release. Unfortunately, as CO2 gets released, the temperature drop can lead to solid CO2 (dry ice) accumulating at the pressure reducer. This ultimately starved the flow, preventing a full bottle from being emptied, which was necessary for proper membrane inflation. This can be resolved using a heated pressure reducer but introduces significantly more complexity, so this was neglected. However, the working proof of concept provides a great platform for future research to build on.”

This work exemplified the key takeaway Benaroya makes in his book Building Habitats on the Moon: “…we need to understand how the reliability of engineered systems can be improved in the unforgiving space and lunar environment and, synergistically with reliability, how to ensure that humans and other living systems can survive and thrive physically and psychologically in that environment.”

Engineering analysis of pressurized lunar lava tubes for human habitation

Conceptual illustration of a lunar base in Mare Tranquilitatis Hole, believed to be an entrance to a lava tube about 100 meters below the lunar surface. Credits: Dipl.-Ing. Werner Grandl

In a new paper in Acta Astronautica Raymond P. Martin, a propulsion test engineer at Blue Origin and Haym Benaroya, a professor of mechanical and aerospace engineering at Rutgers describe the former’s research he carried out as a graduate student under the latter analyzing the structural integrity of lunar lava tubes after pressurization with breathable air. As reported previously on SSP, subterranean lava tubes on the Moon and Mars hold much promise as naturally occurring enclosures that are believed to be structurally sound, thermally stable and would provide natural protection from micrometeoroids as well as radiation. If they could be sealed off for habitation and filled with breathable air, life could be simplified for colonists as they would not have to don space suits for routine activities.

“This paper makes the argument that … lunar lava tubes present the most readily available route to long-term human habitation of the Moon”

Two views of a lunar skylight revealing a potential subsurface lava tube in Mare Ingenii. Credit: NASA/Goddard Space Flight Center/Arizona State University

Martin opens the paper with a history of the discovery and physical characteristics of lunar lava tubes tapping geological data dating back to the Apollo program. The existence of a lava tube is sometimes revealed by the presence of a “skylight”, a location where the roof of the tube has collapsed, leaving a hole that can be observed from space. Using an engineering simulation software called ANSYS, he developed a computer model to assess the structural integrity of these formations when subjected to internal atmospheric pressure.

Martin creates a model for his simulation based on the morphology of a relatively small lava tube known to exist from imagery taken by the Chandrayaan-1 spacecraft, the first lunar probe launched by the Indian Space Research Organisation . This structure averages 120 meters in diameter and was chosen because it has a rille-type opening level to the surface and could be sealed off at two locations. This approach makes sense as a starting point because the cavern would be easy to access and less energy would be be required to pressurize a smaller enclosure. Thus, the amount of infrastructure needed to establish early settlements would be minimized.

The goal of the simulation was to assess the integrity of the enclosed space under varying roof thicknesses and pressurization levels. Failure conditions were defined using commonly employed methods of assessing stability of tunnels in civil engineering and based on lunar basaltic rock general material properties known from testing of samples brought back from the Moon in the Apollo program and lunar meteorites. Finally, a formula was derived for safety factors associated with the failure conditions to ensure robustness of the design.

When running the simulation over various roof thicknesses and internal pressures, an optimum solution was found indicating that it is possible to pressurize a lava tube with a roof thickness of 10 meters with breathable air at nearly a fully atmosphere while maintaining its structural integrity. This would would feel like sea level conditions to people living there.

Being able to pressurize a lava tube for habitation could significantly simplify operations on the Moon as the infrastructure needed to make surface dwellings safe from radiation, micrometeorite bombardment and thermal extremes would be extensive adding costs to the settlement.

“A habitat within a pressurized tube would offer large reductions in
weight, complexity, and shielding, as compared to surface habitats.”

Once a permanent settlement has been established and engineering knowledge advances to enable expansion into larger lava tubes, we can imagine how cities could be built within these spacious caverns, and what it would be like to live and work there. SSP explored just this scenario with Brian P. Dunn, who painted a scientifically accurate picture of such a future in Tube Town – Frontier, a hard science fiction book visualizing life beneath the surface of the Moon. Dunn envisions a thriving cislunar economy with factories producing spacecraft for Mars exploration.

Conceptual illustration of a spacecraft manufacturer inside a lava tube. Credit: Riley Dunn

Martin and Benaroya dedicated their paper to the memory of Brad Blair, a mining engineer who was a widely recognized authority on space resources.

The authors both appeared on The Space Show last December to share insights on this groundbreaking research. Benaroya has been featured previously on SSP with another of his graduate student’s (Rohith Dronadula) thesis on hybrid lunar inflatable structures.

Update March 16, 2023: Martin and Benaroya were featured in The Economist, via a recent licensed post in Yahoo Finance.

Progress on inflatable lunar habitats

Conceptual illustration of a Moon base composed of inflatable habitats near one of the lunar poles. Credits: ESA / Pneumocell

The European Space Agency (ESA) recently published a report on a design study of an inflatable lunar habitat. The work was done by Austrian based Pneumocell in response to an ESA Open Space Innovation Platform campaign. The concept utilizes ultralight prefabricated structures that would be delivered to the desired location, inflated and then covered with regolith for radiation protection and thermal insulation. The main components of the habitat are toroidal greenhouses that are fed natural sunlight via a rotating mirror system that follow the sun. Since the dwellings are located at one of the lunar poles, horizontal illumination is available for most of the lunar night. Power is provided by photovoltaic arrays attached to the mirror assemblies. During short periods of darkness power is provided by batteries or fuel cells.

Cutaway view of the inflatable lunar habitat. Credits: ESA / Pneumocell

The detailed system study worked out engineering details of the most challenging elements including life support, power sources, temperature control, radiation protection and more. The greenhouses would provide sustenance and an environmentally controlled life support system for two inhabitants recycling everything. The authors claim that “…it appears possible to create in the long term a closed system…” This remains to be validated.

Inflatable space habitats have many advantages over rigid modules including lower weight, packaging efficiency, modularity and psychological benefit to the inhabitants because after deployment, the interior living space is much larger for a given mass. Several organizations and individuals have already begun to investigate inflatable habitats for lunar applications. The Pneumocell study mentions ESA’s Moon Village SOM-Architects concept which is a hybrid rigid and partly inflatable structure. Also referenced is the Foster’s and Partners Lunar Outpost design which envisions a 3D printed dome shaped shell formed over an inflatable enclosure.

Foster and Partners Lunar Outpost constructed from a hybrid of 3D printed modules and an inflatable structure. Credits: Foster and Partners

SSP previously covered another hybrid lunar inflatable structure designed by Rohith Dronadula. This design combines a collapsible rigid framework with an inflatable dome, can be autonomously launched from Earth and deployed through telepresence.

Illustration of a hybrid lunar inflatable structure. Credits: Rohith Dronadula

The Pneumocell report concludes: “A logical continuation of this study would be to build a prototype on Earth, which can be used to investigate various details of the suggested components … ” Such an approach would be relatively inexpensive and could inform the future design of flight hardware.

Speaking of ground based prototypes, The Space Development Network has been exploring inflatable structures for habitats on the Moon for some time. Doug Plata, president of the nonprofit organization working to advance space development hopes to display an inflatable version of his InstaBase concept at BocaChica, Texas when SpaceX attempts its first orbital launch of Starship, hopefully within the a year or so. When comparing his design to Pneumocell’s, Plata says in an email to SSP, “One difference is that we have the modules directly attached to each other and so avoid the mass of those connecting corridors.”

Conceptual illustration of InstaBase – a fully inflatable lunar base capable of supporting an initial crew of eight. Credits: The Space Development Network

In reference to the greenhouse designs, Plata continues: “As for the GreenHabs, they have a pretty interesting design to take advantage of direct sunlight. We address the shielding conceptually by fully covering the GreenHabs and then use PV solar drapes and transport the electricity into the GreenHabs via wires. By converting sunlight to electricity to LEDs, more surface area of plants can be grown than the surface area of the solar panels powering them. This is due to the full spectrum of the sun being converted to only those frequencies that plants use.”

It is great to see such creativity and variety of designs for abodes on the Moon. When reliable transportation systems such as Starship blaze the trail, we will be ready with easily deployable, safe and voluminous habitats for lunar settlements.

Artist rendering of the interior of an inflatable toroidal greenhouse in a lunar habitat. Credits: Pneumocell

Engineering analysis of a hybrid lunar inflatable structure

Illustration of a hybrid lunar inflatable structure. Credits: Rohith Dronadula

This month’s issue of Acta Astonautica features a rigorous engineering analysis of a hybrid lunar inflatable structure (HLIS), a habitat design that combines a collapsible rigid framework with an inflatable dome. The concept is based on a masters thesis by Rohith Dronadula under the direction of friend of SSP, Professor Haym Benaroya. Although the article is behind a paywall, SSP got permission to link a pdf of the article.

Dronadula took inspiration for the concept from the functionality of an umbrella. The design is simple in form yet robust in structural integrity. It can be autonomously launched from Earth and deployed through telepresence on the Moon. The structure is not only adaptable to most of the Moon’s habitable areas but also durable enough to withstand the extremes of lunar environments. The author recommends deployment within a lava tube and provides rigorous engineering calculations on the proposed materials and structures leading to a stable design with a safety factor of 6.

When humans go back to the moon in next few decades we will be able to survive and thrive in the harsh lunar environment by living in Dronadula HLISs.