Minerva Space Settlement and University of Space Exploration

Conceptual illustration of the Minerva Space Settlement in orbit around Jupiter’s moon Ganymede. Credits: Minerva Project Team

Space Settlement Progress typically features the latest advancements in technology that are enabling the settlement of space.  This post will be a little different.  When attending the International Space Development Conference last May I was impressed by a team of students from Highschool Colegiul National Andrei Saguna in Romania, who had conceived of a space settlement in orbit around Jupiter’s satellite Ganymede which they call Minerva.  The project was an entry in the National Space Societies’ Space Settlement Contest, and for which they won a second place award for 9th graders.  While admiring their poster I was approached by Maria Vasilescu, who proudly described their project and agreed to collaborate with me on this post. She spoke perfect English, shared marketing materials (key chains, buttons and bookmarks with QR codes linking to their website) and explained that the primary purpose of Minerva would be a deep space location for a University of Space Exploration.  I was intrigued by the concept and was struck by Maria and her teammates’ enthusiastic vision of humanity’s future in space.  I wanted to know more about what motivated this group of teenagers to come together and create such an imaginative project, as youths like them will be future pioneers on the High Frontier.  Maria agreed to coordinate with her team on an interview via email about Minerva.

The Minerva Project Team and their poster session at ISDC 2023, a second prize winner for 9th graders of the NSS Space Settlement Contest. Credits: Minerva Project Team: clockwise from lower right: Bodean Mircea-Sorin, Ana Radus, Andrei Ioan Prunea, Alexandra Nica, Alexandra Maria Nemes, Maria Vasilescu

SSP: How did the team come up with this Minerva concept?

Minerva: We took inspiration from our school which gave us a lot of opportunities to which we owe a lot and we wanted to build such a university in the final frontier.

SSP: You mentioned stumbling across some obstacles during your journey but sticking together by motivating each other.  Is this an experience you feel comfortable sharing?

Minerva: One of the hardest things was to think about all the aspects that go into making a space settlement as ninth graders, such as the form [Forum on the website], which was decided in the last week, or the economical part. But we managed to meet often and brainstorm to come up with better ideas.

SSP: You said that the project helped you discover your true selves. Can you explain how this came about?

Minerva: We developed ourselves and our passions and we found out what we like because it covers a broad area of subjects beyond science. We managed to see by which area we are drawn to and enjoy actually researching.

SSP: You’ve stated that one of the reasons for building Minerva is to invent new lifestyles different from those that exist on Earth. How do you envision lifestyles changing in space?

Minerva: The university can prepare you for life in space, which will be an important part in the humans’ future, therefore we don’t want to invent new lifestyles, but incorporate space in the ones that already exist.

SSP: You’ve proposed auctioning a Minerva NFT to fund your efforts and future experiments.  Would this be the sole source of financing for the project, and will it be sufficient?  What about simply charging tuition for the USE?

Minerva: Everything on our settlement is given and made by us for the people so they don’t need to have money to buy material things. And because we have worked to make almost everything renewable and green, the funds MinervaNFT will bring are more than sufficient for everything else. And as for tuition, we feel like putting students through an exam such as the one that defines their attendance to USE is stressful enough as it is. However, the students will need to pay for the transport from Earth to the settlement.

SSP: There does not appear to be any trade or economic activity on Minerva, only academic studies. Students may choose to return to Earth or stay on the space station after they complete their studies. If they stay, have you considered the possibility of graduates developing and marketing other industries such as software development, robotics, mining water from Ganymede as rocket fuel, intellectual property on life support systems, or many other potential industries that could arise from scientific innovation that would take place on a space settlement? Or would this be totally an academic institution?

Minerva: It is not a totally academic institution because we have two thirds of the ship which will be occupied by students that remained on the settlement. But here, you don’t need money, everything being provided by us, so people don’t work for money, they work to occupy time, for enjoyment. If they do develop other industries, it will be fully for the greater good of humanity and the future of our kind, not for money.

SSP: The location chosen for Minerva is very challenging from an engineering perspective.  Although Ganymede is not deep in Jupiter’s magnetosphere, and has its own magnetic field which could help mitigate exposure, the location will still have high levels of radiation if unprotected, which complicates the design because much more mass is needed to provide adequate shielding to be safe for humans.  In addition, travel times to Jupiter are quite long even with improved propulsion which you’ve indicated would be as high as four years for students wanting to make the journey.  Finally, solar energy at Jupiter’s remote distance from the sun requires that photovoltaic arrays be enormous to provide sufficient energy. A good compromise might be the asteroid Ceres, which is believed to be 25% water and does not have a magnetic field generating high radiation like what would be experienced at Jupiter.  Others have proposed this asteroid as a good destination for space settlement.  Why not locate the settlement in a more accessible and hospitable environment that might reduce costs? 

Minerva: The main reason we chose such a far away location is precisely because we want to explore as much as possible of the cosmos. It’s not that we don’t want a closer location, it’s just that we know very little about Jupiter and its surrounding moons and further and this university can offer humanity an opportunity to explore it and send the research back to Earth. At the same time, we have taken the radiation into consideration and just how today’s spaceships have protection against it, so how [sic] our settlement, but ten times more efficient.

SSP: The sources of power for Minerva include solar arrays and nuclear fission, but you excluded fusion energy because it is currently experimental.  By the time it will be technologically possible to travel to Jupiter and establish infrastructure that far out in the solar system, we will have developed fusion energy for use on Earth as well as in space.  The preliminary design work for a Direct Fusion Drive for rapid transit to the outer planets has been started by Princeton Satellite Systems and the Fusion Industry Association just came out with their third annual report stating that the industry has now attracted over $6 billion in investment.  When it is feasible to begin work on Minerva, fusion power sources will likely be available. Will you be updating your project plan as new technologies become available? 

Minerva: Of course, we are sure that many aspects of our settlement can be improved by future developments in science, engineering and many other fields. As much as possible, we will incorporate them into our settlement. As mentioned in our paper, when talking about technological advances that may happen, we have to keep up with innovation and incorporate them to help us fulfill every need when travelling to space.

SSP: You raised the concern that Earth is approaching a major crisis with population growth putting a strain on Earth’s vital resources.  You also said that the purpose of the space community is to sustain humanity if Earth’s environment became unfavorable for life.  In selecting the location of Minerva, when considering Mars and its orbital distance, you said that even though it fulfills most of your requirements “…the disadvantage of Mars its it proximity to Earth…” and it “…is too close to our planet in order for us to choose it as the proper placement for the spacecraft.”  Why must Minerva be distant from Earth if the planet is in crisis in the future and why isn’t the orbit of Mars, at 56 million kilometers, considered not far enough away?

Minerva: Mars wasn’t a viable option because, as we have stated before, the purpose of the USE is to gather information and scientific news that can only be found in the farther cosmos. We already know a lot about Mars and planets in close proximity to Earth, we want to venture further, discover and experiment with more than we already have.

SSP: Some surveys say that young people live in fear of the future due to climate change.  Many media outlets amplify this doom and gloom.  However, some economists point out that using the United Nation’s own data from the Intergovernmental Panel on Climate Change, with the predicted increase in temperature by the year 2100, global GDP will be reduced by only 4% to deal with climate related impacts.  Although it is clear that we should eventually reduce our dependance on fossil fuels this is not an existential threat.   Plus, technological innovation continues to improve efficiency in resource utilization, energy development and agriculture, enabling higher standards of living notwithstanding increasing population growth. 

The viewpoint that the Earth is in “crisis” is closely aligned with Elon Musk’s motivation, who believes it is urgent that we become a multiplanetary species, to have a “Plan B” in case of a planetwide catastrophe.  Jeff Bezos has a different perspective, that heavy industrial activity could be moved off world to preserve the Earth’s natural environment and to improve humanities’ standard of living though utilization of unlimited space resources.  

Gerard K. O’Neill saw the promise of space settlement as a way to solve Earth’s problems through the humanization of space.  He saw it as a way to end poverty for all humans, provide high-quality living space that would continue to grow robustly, to moderate population growth without war, famine, dictatorship or coercion; and to increase individual freedom.  Does your team share the same anxiety about the future as other young people: that life on Earth is doomed and therefore, we need to build Minvera as a sanctuary to preserve humanity?  Or do you see it as one among many options for space settlement to improve life on Earth and beyond, as outlined in O’Neill’s vision?

Minerva: We see Minerva as a place where people that are smart and passionate about space have a chance to make scientific discoveries that would be impossible to do on Earth. Aligned with Gerald O’Neil’s [sic] view, we believe that humans should expand into space whether it is as a Plan B or by harvesting resources from other planets or celestial objects. With the help of Minerva, the smartest children of their generation will be able to experience these scenarios and be closer to the future. We don’t see Minerva as a Plan B for humanity, students that have finished their 4 years being able to return to earth, but rather as a place where people can enjoy a stress free and enjoyable environment. Therefore Minerva is preparing smart youngsters to be able to take advantage of any of the two cases. If they choose to remain on Earth, the knowledge that they acquired while in the USE will definitely increase humanity’s survivability against the existential threats mentioned.

SSP: You’ve created a survey [what was earlier referred to as a “Form” and can be found at the “Forum” link on the Minerva website] for anyone to express their opinion about your project and the prospect of living in space.  Will you use this feedback to improve your project? 

Minerva: Maybe in the future, yes. We have encouraged people to complete the survey honestly and there’s always place for improvement for anything. And the second reason is to observe humanity’s view on such a settlement. In creating such a complex space settlement, you need to align your view with the society’s beliefs, them being the ones who will eventually populate it.

SSP: Does your team expect to remain engaged with the project as you progress in your education and after you eventually establish your careers here on Earth?

Minerva: It was certainly an experience we will treasure for a long time, but not everything has to be drawn out. I think this project took a lot of work and effort and we want to invest into something new, see this contest from as many angles as possible while we can. This project like no other can incorporate so many aspects of society from which you can discover your biggest passions. Talking to everyone in our group, we found that each one of us enjoyed a different part of the project and we believe that that was the key to our win. We were all doing something we are passionate about and therefore worked even harder for the final result. Now that we’ve learned what topics intrigue us, we can start doing even more work in that domain. We believe that this project is the perfect opportunity and will open numerous doors in any future career path. We strongly recommend this contest to anyone wondering whether they should put their effort into it or not.

The limits of space settlement – Pancosmorio Theory and its implications

Artist’s impression of the interior of an O’Neill Cylinder space settlement near the endcap. Credits: Don Davis courtesy of NASA

Its a given that space travel and settlement are difficult. The forces of nature conspire against humans outside their comfortable biosphere and normal gravity conditions. To ascertain just how difficult human expansion off Earth will be, a new quantitative method of human sustainability called the Panscosmorio Theory has been developed by Lee Irons and his daughter Morgan in a paper in Frontiers of Astronomy and Space Sciences. The pair use the laws of thermal dynamics and the effects of gravity upon ecosystems to analyze the evolution of human life in Earth’s biosphere and gravity well. Their theory sheds light on the challenges and conditions required for self restoring ecosystems to sustain a healthy growing human population in extraterrestrial environments.

“Stated simply, sustainable development of a human settlement requires a basal ecosystem to be present on location with self-restoring order, capacity, and organization equivalent to Earth.”

The theory describes the limits of space settlement ecosystems necessary to sustain life based on sufficient area and availability of resources (e.g. sources of energy) defining four levels of sustainability, each with increasing supply chain requirements.

Level 1 sustainability is essentially duplicating Earth’s basal ecosystem. Under these conditions a space settlement would be self-sustaining requiring no inputs of resources from outside. This is the holy grail – not easily achieved. Think terraforming Mars or finding an Earth-like planet around another star.

Level 2 is a bit less stable with insufficient vitality and capacity resulting in a brittle ecosystem that is subject to blight and loss of diversity when subjected to disturbances. Humans could adapt in a settlement under these conditions but would required augmentation by “…a minimal supply chain to replace depleted resources and specialized technology.”

Level 3 sustainability has insufficient area and power capacity to be resilient against cascade failure following disturbances. In this case the settlement would only be an early stage outpost working toward higher levels of sustainability, and would require robust supplemental supply chains to augment the ecosystem to support human life.

Level 4 sustainability is the least stable necessitating close proximity to Earth with limited stays by humans and would require an umbilical supply chain supplementing resources for human life support, and would essentially be under the umbrella of Earth’s basal ecosystem. The International Space Station and the planned Artemis Base Camp would fall into this category.

Understanding the complex web of interactions between biological, physical and chemical processes in an ecosystem and predicting early signs of instability before catastrophic failure occurs is key. Curt Holmer has modeled the stability of environmental control and life support systems for smaller space habitats. Scaling these up and making them robust against disturbances transitioning from Level 2 to 1 is the challenge.

How does gravity fit in? The role of gravity in the biochemical and physiological functions of humans and other lifeforms on Earth has been a key driver of evolution for billions of years. This cannot be easily changed, especially for human reproduction. But even if we were able to provide artificial gravity in a rotating space settlement, the authors point out that reproducing the atmospheric pressure gradients that exist on Earth as well as providing sufficient area, capacity and stability to achieve Level 1 ecosystem sustainability will be very difficult.

Peter Hague agrees that living outside the Earth’s gravity well will be a significant challenge in a recent post on Planetocracy. He has the view, held by many in the space settlement community, that O’Neill colonies are a long way off because they would require significant development on the Moon (or asteroids) and vast construction efforts to build the enormous structures as originally envisioned by O’Neill. Plus, we may not be able to easily replicate the complexity of Earth’s ecosystem within them, as intimated by the Panscosmorio Theory. In Hague’s view Mars settlement may be easier.

Should we determine the Gravity Rx? Some space advocates believe that knowledge of this important parameter, especially for mammalian reproduction, will inform the long term strategy for permanent space settlements. If we discover, through ethical clinical studies starting with rodents and progressing to higher mammalian animal models, that humans cannot reproduce in less than 1G, we would want to know this soon so that plans for the extensive infrastructure to produce O’Neill colonies providing Earth-normal artificial gravity can be integrated into our space development strategy.

Others believe why bother? We know that 1G works. Is there a shortcut to realizing these massive rotating settlements without the enormous efforts as originally envisioned by Gerard K. O’Neill? Tom Marotta and Al Globus believe there is an easier way by starting small and Kasper Kubica’s strategy may provide a funding mechanism for this approach. Given the limits of sustainability of the ecosystems in these smaller capacity rotating settlements, it definitely makes sense to initially locate them close to Earth with reliable supply chains anticipated to be available when Starship is fully developed over the next few years.

Companies like Gravitics, Vast and Above: Space Development Corporation (formally Orbital Assembly Corporation) are paving the way with businesses developing artificial gravity facilities in LEO. And last week, Airbus entered the fray with plans for Loop, their LEO multi-purpose orbital module with a centrifuge for “doses” of artificial gravity scheduled to begin operations in the early 2030s. Panscosmorio Theory not withstanding, we will definitely test the limits of space settlement sustainability and improve over time.

Listen to Lee and Morgan Irons discuss their theory with David Livingston on The Space Show.

Autonomous conversion of asteroids into rotating space settlements

Artist impression of a rotating space settlement constructed from an asteroid. Credits: Bryan Versteeg, spacehabs.com

When Gerard K. O’Neill first proposed building enormous rotating space settlements at the Earth-Moon Lagrange points back in the 1970s he envisioned many space shuttle flights to launch the initial equipment and people into space. He thought that mass drivers placed on the Moon would be an efficient and cost effective mechanism for lofting copious amounts of lunar regolith needed for radiation shielding to protect colonists aboard the settlements. Alas, the economics of the shuttle did not work out back then, as reusability (among other things) was not ready for prime time, making launch costs a show stopper. Also, O’Neill thought that hundreds of people would be working under weightless conditions in space to fabricate the settlements. This was problematic because of the health hazards of exposure to radiation and microgravity.

All three problems can be solved according to David W. Jensen in an article posted on the ArXiv server. He envisions restructuring an asteroid into a spin gravity space settlement using self replicating robots to process asteroid materials in situ. High launch costs would be solved with a single modest-size probe containing a small number of seed robots that fashion more robots, tools and equipment. This approach bootstraps the colony fabrication through self replicating machines and in situ resource utilization.

“The restructuring process improves the productivity using self-replication parallelism and tool specialization.”

By removing humans from the initial asteroid processing activities, health risks from radiation and the deleterious effects of microgravity would be eliminated. Restructuring of the asteroid would take about a decade, after which colonists would have a rotating space settlement the size of a Stanford Torus providing Earth normal gravity and a safe living space shielded from radiation, ready for buildout and eventual occupation.

Cutaway view of a Stanford Torus space settlement. Credits: Rick Guidice / NASA

The key to this approach is self replication of robots delivered in the initial seed payload which significantly reduces costs by launching only one rocket to the target asteroid. The first machines sent are called replicators, or spiders for short. Four of these spiders with a minimum of supplies use the raw materials of the asteroid to make thousands of copies of themselves plus additional helper machines (tools and equipment). The spiders and helpers cooperate to produce end products of construction materials and the colony structures.

Jensen does not assume total self-replication, meaning that the robots do not need to make complete copies of themselves. A small percentage of more complex mechanisms such as microprocessors are provided in the initial payload as supplemental “vitamins” to finish out the machines. The intent is to minimize the need for humans in the initial construction phase. The objective is to fabricate a basic scaffolding for a rotating space settlement with access to an abundant storehouse of volatiles and metals. The final enclosed structure would then support migration of colonists who would complete construction and add more advanced manufacturing technologies such as solar cell production and microelectronics. As SSP has explained previously, complete closure of self-replicating machines is very challenging, but is not needed in this case.

The technology has wide applications and could be applied to Earth’s desserts, on the surface of the Moon or Mars, or even on the satellites of Jupiter and Saturn.

“We plan to apply and study these concepts for use in lunar, Titan, and Martian environments.”

Jensen’s restructuring process could complement or be combined with other asteroid mining architectures such as the University of Rochester’s approach which builds spin gravity cities starting with a carbon fiber collapsible scaffolding completely encapsulating the target asteroid. As the process matures it could be applied to even larger bodies such as the asteroid Ceres eventually combining settlements into a mega satellite community as envisioned by Pekka Janhunen.

“The equipment and process are scalable and … create a
space station structure that can support a population of nearly
one million people.”

The case for free space settlements if the Gravity Rx = 1G

Cutaway view of interior of Kalpana One, an orbital settlement spinning to produce 1G of artificial gravity. Credits: © Bryan Versteeg, Spacehabs.com / via NSS

SSP has addressed the gravity prescription (GRx) in previous posts as being a key human factor affecting where long term space settlements will be established.  It’s important to split the GRx into its different components that could effect adult human health, child development and reproduction.  We know that microgravity (close to weightlessness) like that experienced on the ISS has detrimental effects on adult human physiology such as osteoporosis from calcium loss, degradation of heart and muscle mass, vision changes due to variable intraocular pressures, immune system anomalies…the list goes on.  But many of these issues may be mitigated by exposure to some level of gravity (i.e. the GRx) like what would be experienced on the Moon or Mars.  Colonists may also have “health treatments” by brief exposures to doses of 1G in centrifuge facilities built into the settlements if the gravity levels in either location is found to be insufficient. We currently have no data on how human physiology would be impacted in low gravity (other then microgravity).

The most important aspect of the GRx with respect to space settlement relates to reproduction.  How would lower gravity effect embryos during gestation? Since humans have evolved in 1G for millions of years, a drastic change in gravity levels during pregnancy could have serious deleterious effects on fetal development.  Since fetuses are already suspended in fluid and can be in any orientation during most of their development, it may be that they don’t need anywhere near the number of hours of upright, full gravity that adults need. How lower gravity would affect bone and muscle growth in young children is another unknown. We just don’t know what would happen without a clinical investigation which should obviously be done first on lower mammals such as rodents. Then there are ethical questions that may arise when studying reproduction and growth in higher animal models that could be predictive of human physiology, not to mention what would happen during an accidental human pregnancy under these conditions. 

Right now, we only know that 1G works. If space settlements on the Moon or Mars are to be permanent and sustainable, many space settlement advocates believe they need to be biologically self-sustaining. Obviously, most people are going to want to have children where they establish permanent homes. If the gravity of the Moon or Mars prevents healthy pregnancy, long term settlements may not be possible for people who want to raise families. This does not rule out permanent settlements without children (e.g. retirement communities). They just would not be biologically self-sustaining.

SSP has suggested that it might make sense to determine the GRx soon so that if we do determine that 1G is required for having children in space, we begin to shape our strategy for space settlement around free space settlements that produce artificial gravity equivalent to Earth’s.  Fortunately, as Joe Carroll has mentioned in recent presentations, the force of gravity on bodies where humanity could establish settlements throughout the solar system seems to be “quantized” to two levels below 1G – about equal to that of the Moon or Mars.  All the places where settlements could be built on the surfaces of planets or on the larger moons of the outer planets have gravity roughly at these two levels.  So, if we determine that the GRx for these two locations is safe for human health, we will know that we can safely raise families beyond Earth in colonies on the surfaces of any of these worlds.  Carroll proposes a Moon/Mars dumbbell gravity research facility be established soon in LEO to nail down the GRx. 

But is there an argument to be made for skipping the step of determining the GRx and going straight to an O’Neill colony?  After all, we know that 1G works just fine.  Tom Marotta thinks so.  He discussed the GRx with me on The Space Show recently.  Marotta, with Al Globus coauthored The High Frontier: An Easier Way.  The easier way is to start small in low Earth orbit.  O’Neill colonies as originally conceived by Gerard K. O’Neill in The High Frontier would be kilometers long in high orbit (outside the Earth’s protective magnetic field) and weigh millions of tons because of the amount of shielding required to protect occupants from radiation.  The sheer enormity of scale makes them extremely expensive and would likely bankrupt most governments, let alone be a challenge for private financing.  Marotta and Globus suggest a step-by-step approach starting with a far smaller version of O’Neill’s concept called Kalpana.  This rotating space city would be a cylinder roughly 100 meters in diameter and the same in length, spinning at 4 rpm to create 1G of artificial gravity and situated in equatorial low Earth orbit (ELEO) which is protected from radiation by our planet’s magnetic field.  If located here the settlement does not require enormous amounts of shielding and would weigh (and therefore cost) far less.  Kasper Kubica has proposed using this design for hosting $10M condominiums in space and suggests an ambitious plan for building it with 10 years.  Although the move-in cost sounds expensive for the average person, recall that the airline industry started out catering to the ultra-rich to create the initial market which eventually became generally affordable once increasing reliability and economies of scale drove down manufacturing costs. 

What about all the orbital debris we’re hearing about in LEO? Wouldn’t this pose a threat of collision with a free space settlement given their larger cross-sections? In an email Marotta responds:

“No, absolutely not, I don’t think orbital debris is a showstopper for Kalpana.

… First, the entire orbital debris problem is very fixable. I’m not concerned about it at all as it won’t take much to clean it up: implement a tax or a carbon-credit style bounty system and in a few years it will be fixed. Another potential historical analogy is the hole in the ozone layer: once the world agreed to limit CFCs the hole started healing itself. Orbital debris is a regulatory and political leadership problem, not a hard technical problem. 

Second, even if orbital debris persists, the technology required to build Kalpana…will help protect it. Namely: insurance products to pay companies (e.g. Astroscale, D-Orbit, others) to ‘clear out’ the orbit K-1 will inhabit and/or mobile construction satellites necessary to move pieces of the hull into place can also be used to move large pieces of debris out of the way.  In fact, I think having something like Kalpana…in orbit – or even plans for something that large – will actually accelerate the resolution of the orbital debris problem. History has shown that the only time the U.S. government takes orbital debris seriously is when a piece of debris might hit a crewed platform like the ISS. Having more crewed platforms + orbital debris will drastically limit launch opportunities via the launch collision avoidance process. If new satellites can’t be launched efficiently because of a proliferation of crewed stations and orbital debris I suspect the very well-funded and strategically important satellite industry will create a solution very quickly.”

To build a space settlement like the first Kalpana, about 17,000 tons of material will have to be lifted from Earth.  Using the current SpaceX Starship payload specifications this would take 170 launches to LEO.  By comparison, in 2021 the global launch industry set a record of 134 launches.  Starship has not even made it to orbit yet, but assuming it eventually will and the reliability and reusability is demonstrated such that a fleet of them could support a high launch rate, within the next 20 years or so there will be considerable growth in the global launch industry.  If larger versions of Kalpana are built the launch rate could approach 10,000 per year for space settlement alone, not to mention that needed for rest of the space industry.  This raises the question of where will all these launches take place?  Are there enough spaceports in the world to support it?  Marotta has an answer for this as well.  As CEO of The Spaceport Company, he is laying the groundwork for the global space launch infrastructure that will be needed to support a robust launch industry.  His company is building distributed launch infrastructure on mobile offshore platforms.  Visit his company website at the link above for more information.

Conceptual illustration of a mobile offshore launch platform. Credits: The Spaceport Company

For quite some time there has been a spirited debate among space settlement advocates on what destination makes the most sense to establish the first outpost and eventual permanent homes beyond Earth.  The Moon, Mars or free space O’Neill settlements.  Each location has its pros and cons.  The Moon being close and having ice deposits in permanently shadowed craters at its poles along with resource rich regolith seems a logical place to start.  Mars, although considerably further away has a thin atmosphere and richer resources for in situ utilization.  Some believe we should pursue all the above.  However, only O’Neill colonies offer 1G of artificial gravity 24/7.  With so many unknowns about the gravity prescription for human health and reproduction, free space settlements like Kalpana offer a safe solution if the markets and funding can be found to make them a reality.

Interview with Mikhail Shubov: Guided self replicating factories, orbital fuel depots, hydrogen production on Mars and other visions for space settlement

Vintage 1980 artist depiction of a self replicating factory on the Moon. Credits: NASA

Earlier this year SSP covered self replicating factories for space settlement. An innovative paper on this topic with a simpler approach was submitted by Mikhail Shubov to ArXiv.org in August that shows how to accelerate efforts in this area.

A fully autonomous self replicating factory in space requires significant advancements in artificial intelligence, robotics, and other fields. Such facilities are mainly theoretical at this point and may not be feasible for many decades. But if humans could “guide” the operation remotely via computer control, a colony on the Moon could be started relatively soon.  This could be the proving ground for establishing such facilities on other worlds which Shubov believes could be set up on Mercury, Mars and in the Asteroid Belt eventually leading to exponential growth allowing humanity to expand out into the solar system and beyond.  He suggests that rather then using the usual definition of self-replication in which a factory would make a duplicate copy of itself, until this capability is realized, a better figure of merit would be the “doubling time”. This is how long it takes to double the facility’s mass, energy production, and machine production.

I reached out to Dr. Shubov about this article and discovered that he has been busy with a variety of scholarly papers on several technologies needed for space settlement. He agreed to a wide ranging interview via email about these topics and his vision of our future in space.

SSP: Thank you Dr. Shubov for taking the time for this interview.  With respect to your work on Guided Self Replicating Factories (GSRF), there are already companies developing semiautonomous robots for in situ resource utilization on other worlds.   OffWorld, Inc. states that “We envision millions of smart robots working under human supervision on and offworld, turning the inner solar system into a better, gentler, greener place for life and civilization.”  Their business model is focused on developing a robotics platform for mining and construction on Earth, then leveraging the technology for use in space.  Do you think this is a good approach to get started?

MS: Thank you Mr. John Jossy for taking interest in my work!

In my opinion, remotely guided robots will be very effective for construction of a colony on the Moon. These robots could be guided by thousands of remote operators on Earth. They would be linked to Earth’s Internet via Starlink which is already being deployed by Elon Musk via SpaceX. Starlink will consist of thousands of satellites linked by lasers and providing broadband Internet on Earth. About 1,646 satellites are already orbiting the Earth.

Hopefully, it would be possible to produce [an] Earth-Moon Internet Connection of about a Terabit per second. That would enable people on Earth to remotely operate hundreds of thousands of robots.

Using these robots on Asteroids and other planets of Solar System will be much more difficult due to low bandwidth and high delay of communication. For example, latency of communication between Earth and Mars is 4 to 21 minutes.

SSP: Obviously, establishing outposts on other worlds where astronauts could teleoperate robots to build a GSRF would eliminate the latency problem, which you address in your paper.

You’ve envisioned four elements of a GSRF: an electric power plant, a material production system (ore mining, beneficiation, smelting), an assembly system in which factory parts are shaped and fabricated, and a space transportation system.  With respect to the space transportation system you cover both launch vehicles and in-space propulsion systems.  The space transportation element of a GSRF, although vital for its implementation, seems to be an external part of the system.  In fact, you stated that “Initially, spaceships will be built on Earth. Fuel for refueling spaceships will be produced in space colonies from the beginning.”  So, when calculating the doubling time of a GSRF, we are not including the production of space transportation systems, correct?

MS: In my opinion, [the] space transportation system may become part of GSRF at later stages of development. How soon space transportation becomes a part of GSRF depends on the speed of development of different technologies.

If inexpensive space launch from Earth becomes available, then there will be less reliance on self-replication and more reliance on transportation of materials from Earth. In this case, space transportation system will not be part of GSRF for a long time.

If rapid growth of a Space Colony by utilization of in situ resources is possible, then many elements of space transportation system would be produced at the colony. In this case, [the] space transportation system will become a part of GSRF relatively soon.

SSP: You suggest that an important product produced by a GSRF in the Asteroid Belt would be platinum group metals to be delivered to Earth, and that they would help finance expansion of space colonization.  Some space resource experts, including John C. Lewis, believe that “…there is so vast a supply of platinum-group elements in the NEA [Near Earth Asteroids] … that exploiting even a tiny fraction of them would cause the market value to crash, bringing to an end the economic incentive to mine and import them.”  Some suggest the market for these precious metals may be in space not on Earth.  When you say “delivered to Earth” what markets were you envisioning to generate the profits needed to finance the GSRF?

MS: In my opinion the main applications of platinum group metals would be in industry. First, PGM are very important as chemical reaction catalysts. In particular, platinum is used in hydrogen fuel cells and iridium is a catalyst in electrolytic cells. It is likely that demand for platinum, iridium and other PGM will grow along with hydrogen economy. Second, platinum and palladium is used in glass fiber production.

Third, Iridium-coated rhenium rocket thrusters have outstanding performance and reusability. Rhenium is also used in jet engines. These thrusters will also provide a market for iridium and rhenium metals.

SSP: As the need for PGM grows exponentially in the future, especially with energy and battery production needs on Earth in the near future, the environmental impacts of mining these materials on Earth may be another reason to source these materials off world.

Mining water to produce hydrogen for rocket fuel is a theme throughout your writings.  In a paper submitted to the arXix.org server last month entitled Feasibility Study For Hydrogen Producing Colony on Mars, you propose that a technologically mature Martian factory could produce and deliver at least 1 million tons of liquid hydrogen per year to Low Earth Orbit.  Does placing a hydrogen production facility on Mars for fuel used in near-Earth space make sense from a delta-v perspective?  You acknowledge that initially it will be cheaper and easier to access the Moon’s polar ice to produce hydrogen.  But in the long term, Near Earth Asteroids (NEA) or even the Asteroid Belt are easier to access and they include CI Group carbonaceous chondrites which contain a high percentage (22%) of water.  Can you reconcile the economics of sourcing hydrogen on Mars over NEAs?

MS: Delivery of Martian hydrogen into the vicinity of Earth may be necessary only when the space transportation technology is relatively mature. In particular, as I mention in my work, Lunar ice caps contain between 48 million and 73 million tons of easily accessible hydrogen. Until at least 16 million tons of Lunar hydrogen is used, hydrogen from other sources would not be needed.

As I calculate in my work, delta-v for transporting hydrogen from Low Mars Orbit to LEO is 3.5 km/s accomplished by rocket engines plus about 3.2 km/s accomplished by aerobreaking. This would be economic if vast amounts of electric energy will be produced on Mars easier than on asteroids. An important and renewable resource on Mars is the heat sink in the form of dry ice. This may enable production of vast amounts of electric energy by nuclear power plants.

Even if delivery of hydrogen from Low Mars Orbit to Earth turns out to be economically infeasible, hydrogen depots in near-Mars deep space would still play a very important role in transportation to and from Asteroid Belt as well as [the] Outer Solar System.

SSP: Your first choice of a power source for the colony on Mars is an innovative heat engine utilizing dry ice harvested from the vast cold reservoirs at the planet’s polar caps. You suggest that the initial heat source for this sublimation engine be a nuclear reactor. Why not simply use the nuclear reactor to produce electricity? Nuclear reactors coupled to high efficiency Stirling engines for electricity generation like NASA’s Kilopower project have very high power density per unit weight and the technology will be relatively mature soon. Your second choices are solar and wind which are not as reliable as a nuclear power source, especially with reduced solar flux at Mars’s orbit and the problem caused by dust in the atmosphere. Why was a more mature nuclear power technology for direct electricity production not considered?

MS: Thank you.  As I understand now, a regular nuclear reactor with a heat engine using water or ammonia as a working fluid is the best choice for energy production on Mars.  Dry ice should only be used as a heat sink and not as working fluid.  Given the very low temperature and ambient pressure of Martian dry ice, it is likely that power plants will have thermal efficiency of at least 50%.

Almost all components of Martian power stations can be manufactured from in situ resources.  Only the reactors themselves and the nuclear fuel will have to be delivered from Earth.

SSP: A booming space transportation economy will need cryogenic fuel depots to store hydrogen for rocket fuel in strategic locations throughout the inner solar system.  You’ve got this covered in your recent paper Hydrogen Fuel Depot in Space.  Some start ups like Orbit Fab have already started work in this area, albeit on a smaller scale, and United Launch Alliance integrated cryogenic storage into their Cislunar-1000 plans a few years back, but this initiative seems to have slowed down due to delays in ULA’s next generation Vulcan launch vehicle.  In this paper you calculate the required energy to refrigerate hydrogen in one smaller (400 tons) and another larger (40,000 tons) depot.  In both cases, a sun shield is required to block sunlight to prevent boil off.  You don’t mention the method of power generation to provide energy for the refrigeration units.  Could the sun shield have a dual use function by incorporating photovoltaic solar cells on the sun facing side to generate electricity to power the refrigeration system?

Diagram depicting a cryogenic liquid hydrogen storage depot with 40,000 ton capacity. Credits: Mikhail Shubov

MS: Power for the refrigeration system will be provided by an array of solar cells placed on the sun shield.  As I mention in my work, the 400 ton depot requires 80 kW electric power for the refrigeration system, while the 40,000 ton depot requires 840 kW electric power.  This power can be easily provided by photovoltaic arrays.

SSP: SpaceX has proven what was once believed impossible: that rockets could be reused and that turnaround times and reliability could approach airline type operations.  Although we are not there yet, costs continue to come down.  In your paper entitled Feasibility Study For Multiply Reusable Space Launch System you calculate that with your proposed system in which the first two stages are reusable and the third stage engine can be returned from orbit, launch costs could be reduced to $300/kg.  Musk is claiming that with the projected long term flight cadence, eventually Starship costs could be as low as $10/kg.  Even if he is off by a factor of 10 that is still lower than your figure.  What advantages does your system offer over Starship? 

MS: The main advantage of the Multiply Reusable Space Launch System is the relatively light load placed on each stage. As I mention on p. 10, the first stage has delta-v of 2.6 km/s and the second stage has delta-v of 1.85 km/s. The engines have high fuel to oxidizer ratio and a low combustion chamber temperature of 2,100oC. These relatively light loads on the rocket airframes and engines should make these rockets multiply reusable similar to airliners. The launch system should be able to perform about 300 space deliveries per year.

Hopefully Elon Musk would succeed [in] reducing launch costs to at least $100 per kg. Unfortunately, many previous attempts at drastic reduction of launch costs did not succeed. Hence, we may not be sure of Starship’s success yet.

SSP: You state in several of your papers that:

“A civilization encompassing the whole Solar System would be able to support a population of 10 quadrillion people at material living standards vastly superior to those in USA 2020. Colonization of the Solar System will be an extraordinary important step for Humankind.”

Why do you think that colonization of the solar system is important for humanity and when do you think the first permanent settlement will be established on the Moon or in free space?  Here I use the National Space Society’s definition of a space settlement:

“A space settlement” refers to a habitation in space or on a celestial body where families live on a permanent basis, and that engages in commercial activity which enables the settlement to grow over time, with the goal of becoming economically and biologically self-sustaining as a part of a larger network of space settlements. “Space settlement” refers to the creation of that larger network of space settlements.

MS: In my opinion colonization of Solar System will bring unlimited resources and material prosperity to Humankind.   The human population itself will be able to grow by the factor of a million without putting a strain on the available resources.

As for the time-frame of establishment of human settlements on the Moon and outer space, I have both optimistic and pessimistic thoughts.  On one hand, Humankind already possesses technology needed to establish rapidly growing space settlements.  This means that Solar System colonization can start at any time. On the other hand, such technology already existed in 1970s.  This technology is discussed in Gerard K. O’Neill’s 1976 book “The High Frontier: Human Colonies in Space”.  Thus, space colonization can be indefinitely delayed by the lack of political will.  Hopefully space colonization will start sooner rather then later.

Credits: Gerard K. O’Neill / Space Studies Institute Press

Reproduction off Earth and its implications for space settlement

Launch of the Space Shuttle Atlantis (STS-66) on November 3, 1994. The mission carried an experiment called NIH.Rodent 1, the first of only two study’s to date on rats launched at mid-pregnancy and landed close to full term to study the effects of microgravity on reproduction. Credits: NASA

In a MDPI Journal Life paper, Alexandra Proshchina and a team* of Russian researchers summarize the research that has been performed thus far on reproduction of invertebrates in space. As mentioned in the article, the only data we have on mammalian reproduction in microgravity since the dawn of the space age is from two experiments carried out over 26 years ago. The studies looked at pregnant rats launched aboard the Space Shuttle on missions STS-66 and STS-70 in 1994 and 1995 respectively, and there have never been any births of mammals in space. This huge knowledge gap on reproduction in space is problematic for human space settlement. Yet Elon Musk, The Mars Society, and other groups are charging ahead with plans for cities on Mars. What if we discover that humans cannot have healthy babies in 0.38g? SSP has covered the quest for determining the gravity prescription before looking at JAXA’s effort to at least start experimenting with artificial gravity in space, albeit on adult mammals (mice). We are still waiting for JAXA’s published results of 1/6g experiments carried out in 2019.

The data from the Space Shuttle program only looked at part of the gestation period (after 9 days) and only in microgravity. The results did not bode well for reproduction in space. Some findings “…clearly indicate that microgravity, and possibly other nonspecific effects of spaceflight, can alter the normal development of the brain itself.”

Histological cross section through a representative rat brain from NIH.Rodent 1 experiment from STS-66. Left side (a) is low magnification and right side (b-d) are high magnification. Red arrows show areas of neurodegeneration. 1 – Nasal cavity, 2 – olfactory nerve, 3 – olfactory bulb, 4 – eye, 5 – cortex telencephali, 6 – hippocampus, 7 – fourth ventricle, 8 – cerebellum. Credits: Alexandra Proshchina et al.*

So we have this one piece of data for reproduction in microgravity and nothing in higher gravitational fields except what we know here on Earth in 1g.

Would partial gravity like on the Moon or Mars be sufficient for normal fetal development in rats (or mammals in general, especially humans) during the full gestation period? If problems are identified could it be extrapolated to human reproduction? The fact that homo sapiens and their ancestors evolved on Earth in 1g for hundreds of thousands of years is a big red flag for future space colonists that hope to settle on the surface of planetary bodies and have children.

We don’t know how lower gravity conditions could affect embryonic cell growth. How would the changes in surface tension and embryo cell adhesion be altered in these environments? We have very little data on cellular mechanisms and embryonic alterations that lower gravity may induce that could affect fetal development.

“There are also many other questions to be answered about vertebrate development under space flight conditions.”

A recent report on giving birth in space by SpaceTech Analytics looks at many of the factors that need to be considered for human reproduction off Earth. Most problems could be potentially mitigated through engineering solutions such as radiation protection, medical innovations tailored for space use, life support technology, etc. In this entire presentation the authors gave very little consideration to partial gravity affects on human embryos and child birth. One slide (number 70) out of 85 discusses these issues.

It is clear that more and longer term experiments will be necessary to determine how partial gravity affects the reproduction and development of mammals before humans settle space. Some researchers are actually considering genetic modification to allow healthy reproduction in space, and the ethical considerations associated with this course of action. Obviously, such a drastic methods would come only if there was no other alternative. One would think that building O’Neill type habitats rotating to produce 1g of artificial gravity would be preferable to such extreme measures.

Clearly, we need a space based artificial gravity laboratory to carry out ethical clinical studies on the gravity prescription for human reproduction, starting with rodents and other lower organisms. SSP recently covered a kilometer long version of such a facility that could be deployed in a single Falcon Heavy launch. And don’t forget Joe Carroll’s proposal for a LEO partial gravity test facility. Doesn’t it make sense to invest in such a facility and do the proper research before (or at least in parallel to) detailed engineering studies of colonies on the Moon or Mars intended for long term settlement? This research could inform decision making on where we will eventually establish permanent space settlements: on the surface of smaller worlds or in free space settlements envisioned by Gerard K. O’Neill. Elon Musk may want to consider such a facility before he gets too far down the road to establishing cities on Mars.


* Authors of Reproduction and the Early Development of Vertebrates in Space: Problems, Results, Opportunities: Alexandra Proshchina, Victoria Gulimova, Anastasia Kharlamova, Yuliya Krivova, Nadezhda Besova, Rustam Berdiev and Sergey Saveliev.

Virtus Solis: Affordable Space Solar Power

Conceptual illustration of a Virtus Solis satellite array beaming power to central California (not to scale). Credits: Virtus Solis Technologies. NOTE: all images in this post are credited to Virtus Solis Technologies

Ever since I was in high school space solar power has been the holy grail of space advocates. I even wrote a report on the topic based on Peter Glaser’s vision in my high school physics class before Gerard K. O’Neill popularized the concept in The High Frontier leveraging it as the economic engine behind orbiting space settlements. But the technology was far from mature back then, and O’Neill knew back in 1976 the other main reason why after all these years space solar power has not been realized:

“If satellite solar power is an alternative as attractive as this discussion indicates, the question is, why is it not being supported and pushed in vigorous way? The answer can be summarized in one phrase: lift costs.” – Gerard K. O’Neill, The High Frontier

John Bucknell, CEO and Founder of Virtus Solis, the company behind the first design to cost space solar power system (SSPS), believes that recent technological advances, not the least of which are plummeting launch costs, will change all that.  He claims that his approach will be able to undercut fossil fuel power plants on price.  He recently appeared on The Space Show (TSS) with Dr. David Livingston discussing his new venture.  SSP reached out to him for an exclusive interview and a deep dive on his approach, the market for space solar power and its impact on space development.

SSP: Technological advancements of all the elements of a space solar power system have gradually matured over the last few decades such that size, mass and costs have been reduced to the point where there are now experiments in space to demonstrate feasibility.  For example, SSP has been following the first test of the Naval Research Laboratory’s Photovoltaic Radio-frequency Antenna Module (PRAM) aboard the Air Force’s X37 Orbital test vehicle.  Caltech’s Space-based Solar Power Project (SSPP) has been working on a tile configuration that combines the photovoltaic (PV) solar power collection, conversion to radio frequency power, and transmission through antennas in a compact module.  According to your write-up in Next Big Future on a talk given to the Power Satellite Economics Group by the SSPP project manager Dr. Rich Madonna, they plan a flight demonstration of the tile configuration this December.  The Air Force Research Laboratory’s Space Solar Power Incremental Demonstrations and Research (SSPIDR) project also plans a flight demonstration later this year with an as yet unannounced configuration.  Which configuration of this critical element (PRAM or tile) do you think is the most cost effective and can you say if your system will be using one of these two configurations or some other alternative?

Bucknell: There is a lot of merit to the tile configuration as it shares much of it’s manufacturing process with existing printed circuit board (PCB) construction techniques. The PRAM itself is a version of the tile, but as it was Dr. Paul Jaffe’s doctoral dissertation prototype (from 2013) it did not use PCB techniques and should not be considered an intended SSPS architecture. Details of Caltech’s latest design aren’t released, but it appears they intend to deploy a flexible membrane version of the tile to allow automated deployment. Similar story with SSPIDR. As space solar power is a manufacturing play as much as anything, you would choose known large scale manufacturing techniques as your basis for scaling if you intend earth-based manufacturing – which we do. So yes, we are planning a version of the tile configuration.

SSP: You’ve said that the TRL levels of most of the elements of an SSPS are fairly mature but that the wireless power transmission of a full up phased array antenna from space to Earth is at TRL 5-6.  The Air Force Research Laboratory (AFRL) plans a prototype flight as the next phase of the SSPIDR project with demonstration of wireless power transmission from LEO to Earth in 2023.  What is your timeline for launching a demo and will it beat the Air Force?

Bucknell: Our timescales are similar for a demonstrator, but I suspect the objectives of a military-focused solution would be different than ours.  We would plan a LEO technology demonstrator meeting most of the performance metrics required for a MEO commercial deployment.

SSP: Your solution is composed of mass produced, factory-built components including satellites that will be launched repeatedly as needed to build out orbital arrays.  Will multiple satellites be launched in one payload or will each module be launched on its own?  What is the mass upper limit of each payload and how many launches are needed for the entire system?

Bucknell: We intend a modular solution, such that very few variants are required for all missions. A good performance metric for a SSP satellite would be W/kg – and we believe we can approach 500 W/kg for our satellites (Caltech has demonstrated over 1000 W/kg for their solution). With known launchers and their payloads a 100MW system would take three launches of a Starship, with less capable launchers requiring many more. Since launch cost is inversely related to payload mass, we expect Starship to be the least expensive option although having a competitive launch landscape will help that aspect of the economics with forthcoming launchers from Relativity Space, Astra and Rocket Lab being possibilities.

SSP: The way you have described the Virtus Solis system, it sounds like once your elements are in orbit, additional steps are needed to coordinate them into a functional collector/phased array. Presumably, this requires some sort of on-orbit assembly or automated in-space maneuvering of the modules into the final configuration. I know you are in stealth mode at this point, but can you reveal any details about how the system all comes together?

Bucknell: An on-orbit robotic assembly step is necessary, although the robotic sophistication required is intentionally very low.

SSP: Your system is composed of a constellation of collection/transmitter units placed in multiple elliptical Molniya sun-synchronous orbits with perigee 800-km, apogee 35,000-km and high inclination (e.g. > 60 degrees).  I understand this allows the PV collectors to always face the sun while the microwave array can transmit to the target area without the need for physical steering, which simplifies the design of the spacecraft.  Upon launch, will the elements be placed in this orbit right away or will they be “assembled” in LEO and then moved to the destination orbit.  Do the individual elements or each system assembly as a whole have on-board propulsion?

Bucknell: The concept of operations is array assembly in final orbit, mostly to avoid debris raising from lower orbits.

Schematic illustration of a three-array Virtus Solis constellation in Molniya orbits serving Earth’s Northern Hemisphere and a two-array constellation serving the Southern Hemisphere of Luna

SSP: The primary objective of the AFRL SSPIDR project is delivery of power to forward deployed expeditionary forces on Earth which would assure energy supply with reduced risk and lower logistical costs.  It sounds like your system would not work for this application given the need for 2-km diameter rectenna.  Could this potential market be a point of entry for your system if it were scaled down or reconfigured in some way?

Bucknell: Wireless Power Transmission (WPT) at orbital to surface distances suffer from diffraction limits, which is true for optics of all kinds.  It is not physically possible to place all the power on a small receiver, and therefore the military will likely accept that constraint.  As a commercial enterprise, we could not afford to not collect the expensively-acquired and transmitted energy to the ground station. There are also health and safety considerations for higher intensity WPT systems – ours cannot exceed the intensity of sunlight for example, and therefore is not weaponizable.

SSP: You said on TSS that your strategy would, at least initially, bypass utilities in favor of independent power producers.  What criteria is required to qualify your system for adoption by these organizations?  You mentioned you have already started discussions with one such group.  Can you provide any further details about how they would incorporate an SSPS into their existing assets? 

Bucknell: One of the key features of space solar power is on-demand dispatchability.  Grid-tied space solar power generation has the benefit of being able to bid into existing grids when generation is needed and task the asset to other sites when demand is low.  This all assumes that penetration will be gradual, but some potential customers might desire baseload capacity in which case there is not as much need for dispatchability.  Each customer’s optimal generation profile is likely to be unique so it is preferable to attempt to match that with a flexible system.

Conceptual illustration of a 1GW Virtus Solis rectenna array next to Topaz Solar Farm of 550MW capacity in San Luis Obispo County, California

SSP: Other companies have alternative SSPS designs planned for this market.  For example, SPS – ALPHA by Solar Space Technologies in Australia and CASSIOPeiA by International Electric Company in the UK. How does Virtus Solis differentiate itself from the competition?

Bucknell: From a product perspective, we are able to provide baseload capacity at far lower cost. Also, we intentionally selected orbits to not only reduce costs but to induce sharing of the orbital assets across the globe such that this is not a solution just for one country or region.

SSP: How big is the likely commercial market for your product/services going to be by the time you are ready to start commercial operations?  Can you share some of your assumptions and how they are derived?

Bucknell: Recent data indicates that electrical generation infrastructure worldwide is about $1.5T annually.  If you add fossil fuel prospecting, it is $3.5T.  Total worldwide generation market size is about $8T.  All of this is derived from BP’s “Statistical Review of World Energy – June 2018” and the report from the International Energy Agency “World Energy Investment 2018

SSP: For your company to start operations, what total funding will be required, and will it come from a combination of government and private sources, or will you be securing funding only from private investors? 

Bucknell: As a startup, especially in hardware, funding comes from where you can get it.  To date no governmental funding opportunities have matched our technology, but that might change.  Our early raise has been from angel investors and venture capital firms.  Over the course of the research and development efforts, we expect demand for capital will be below $100M over the next several years but accurately forecasting the future is challenging.  We would note this level of required investment is far below our competition.

SSP: For hiring your management team, since this business is not mature, what analogous industries would you be looking at to recruit top talent?

Bucknell: Everything in our systems exist today elsewhere.  The wireless data industry (5G for example) has the tools and experience for developing radio frequency antennas and associated broadcast hardware.  The automotive industry has extensive experience with manufacturing electronics at low cost in high volumes, including power and control electronics.  Controls software engineering is a large field in aerospace and automotive, but in a large distributed system like ours the controls software will extend far beyond guidance, navigation and control (GNC).

SSP: O’Neill envisioned the production of SSPSs as the market driver for space settlements, in addition to replication of more space colonies.  This approach seems to have gathered less steam over the years as economics, technological improvements, and safety concerns have taken people out of the equation to build SSPSs in space.  In a recent article in the German online publication 1E9 Magazine you talked about SSPSs being useful for settlements on the Moon and Mars.  What role do you see them playing in free space settlements and could they still help realize O’Neill’s vision?

Bucknell: We stand at a cross-roads for in-space infrastructure.  For the first time access to space costs look to be low enough to make viable commercial reasons to deploy large amounts of infrastructure into cislunar space and beyond.  To date the infrastructure beyond earth observation and telecom has been deployed to mostly satisfy nation-state needs for science unable to be performed anywhere else as well as exploration missions (also a form of science).  However, there has to be a strong pull/demand to spur the construction of access to space hardware (heavy lift rockets) that consequently lowers the cost further through economies of scale.  As I described in my Space Show interview there are only a few commercial in-space businesses that are viable with today’s launch costs.  We have had telecom for a long time, followed closely by military and then commercial earth observation.  Now we have a large constellation of “internet of space”.  Even with those applications, there is not a large pull to scale reusable launch vehicle production – as reusability is counter-productive for economies of scale.  A large, self-supporting in-space infrastructure would be needed to bootstrap launch production sufficiently to self-fulfil low cost access to space – Space Solar Power is that infrastructure.  Space tourism, asteroid mining and others do not have scale nor potential lofted mass to scale the launch market adequately.  In that way, O’Neill’s vision is right – and the follow-on markets can leverage the largely paid-for launch infrastructure to make themselves viable.  Space solar power will be the enabler for humanity to live and work off-Earth, and Virtus Solis is leading the way.

Are we on the right track for space settlement?

Artist depiction of an O’Neill cylinder from the novel K3+. Credits: Katie Lane (Full distribution rights reserved by Erasmo Acosta)

Erasmo Acosta thinks we might be headed in the wrong direction, that we may be suffering from planetary chauvinism and the better way may be to colonize space with O’Neill cylinders. He makes his case in a post on the Predict section of Medium. SSP has long been a strong proponent of free space O’Neill-type settlements, the advantages of which are numerous, not the least of which is 1G artificial gravity to prevent detrimental human health issues that may arise for occupants of colonies with lower gravity on the Moon or Mars. Such space settlements would house millions of people in perfect 70 degree controlled weather without the threat of natural disasters.

Jeff Bezos has advocated for this philosophy with the aim of moving heavy industry off world and preserving Earth’s environment for “residential zoning”. Recent developments seem to indicate he may be spending more of his time focusing on the realization of that vision.

Acosta, a retired software engineer, feels so strongly that O’Neill cylinders will be the preferred mode of space settlement he wrote a novel called K3+ which depicts a future in the next century where humans will be living in thousands of O’Neill cylinders in a “post-scarcity” civilization of virtually unlimited resources. Acosta envisions Mercury as a source of raw materials:

“The planet’s proximity to the sun, its low gravity, and metal-rich concentration make it the ideal source of raw materials for constructing thousands of O’Neill cylinders.”

In a previous post on Predict, he explains how to kickstart a program for harnessing space resources to fabricate these colonies.

After many years of construction, multiple rings of rotating habitats would eventually encircle the sun harnessing a vast amount of the energy output of our star approaching the configuration of a Dyson sphere.

Artist depiction of multiple rings of rotating habitats around the sun. Credits: Katie Lane (Full distribution rights reserved by Erasmo Acosta)

Finally, as a tribute to the father of free space colonies and an inspiration for a generation of space settlement advocates, I’d like to close out this post with a link to the just released trailer for the much anticipated documentary: The High Frontier, The Untold Story of Gerard K. O’Neill.