Sierra Space and payload integrator Tec-Masters to facilitate test of Honda’s Circulative Renewable Energy System on the ISS

Artist impression of Sierra Space’s Dream Chaser space plane Tenacity en route to the ISS. Credits: Sierra Space.

Honda is teaming up with Sierra Space and Tec-Masters to test their Circulative Renewable Energy System (CRES) designed to use water and sunlight to produce oxygen, hydrogen, and electricity for use on the Moon. The company’s research suggests that CRES could power a lunar colony, providing life support and fuel while recycling water in a closed-loop system from water sourced in situ.

Honda’s CRES is designed to support lunar activities by generating essential resources using sunlight and water extracted from lunar regolith or ice deposits, especially at the Moon’s polar regions. The system employs a high differential pressure water electrolysis process, which breaks down water into high-pressure hydrogen and oxygen. In a lunar colony, oxygen would be used for breathable air as well as stored in fuel cells to produce electricity, while the water byproduct is recycled back into the system, creating a closed-loop cycle. CRES is efficient, lightweight, and low-maintenance, ideal for settlements established in the harsh lunar environment, including extreme temperature fluctuations and low gravity. The system’s ability to operate under these conditions makes it suitable, potentially reducing reliance on Earth resupply and supporting a sustainable lunar presence.

Honda’s CRES is a sophisticated technology developed to support human activities on the Moon by leveraging local resources. It is part of a joint research effort with the Japan Aerospace Exploration Agency (JAXA), an international partner in NASA’s Artemis program, which seeks to establish a sustainable human presence on the Moon.

Circulative renewable energy system Honda is working to develop as part of the infrastructure for humanity’s sustained habitation on the Moon where resources other than sunlight and water are not available. Credits: JAXA / Honda

The core technology of CRES is a high differential pressure water electrolysis system, which electrolyzes water to produce high-pressure hydrogen and oxygen. Its is an evolution of Honda’s Power Creator technology, initially developed for fuel cell vehicles and hydrogen stations here on Earth, reflecting Honda’s broader commitment to carbon neutrality and sustainability.

Key technical specifications and advantages include:

  • Size and Weight: The electrolysis stack measures 420 mm tall and 210 mm wide, with the overall system at 980 mm tall, making it compact and lightweight, suitable for space transport where costs are approximately $700,000 per kilogram (delivered to the lunar surface).
  • Pressure Capability: It can store hydrogen at pressures up to 70 MPa, about 700 times Earth’s atmospheric pressure, enhancing storage efficiency.
  • Low Maintenance: The system requires no mechanical compressor, reducing complexity and maintenance needs in space.
  • Adaptability to Lunar Conditions: Engineered to withstand the Moon’s extreme environment, including temperature variations from 110°C during the day to -170°C at night, 1/6th Earth gravity, and high radiation levels.

Sierra Space, Honda, and Tec-Masters have formed a strategic partnership to test Honda’s high-differential pressure water electrolysis system on the International Space Station (ISS) facilitated be Sierra Space’s Dream Chaser spaceplane. Dream Chaser has a cargo capacity of over 6 tons and can return payloads to Earth at under 1.5g’s on commercial runways, enhancing its flexibility for space missions. The first Dream Chaser, named Tenacity, is currently undergoing final testing at NASA’s Kennedy Space Center for its ISS mission under NASA’s Commercial Resupply Services-2 (CRS-2) contract. The launch is currently planned for no earlier than the third quarter of this year, however, this first payload will not include Honda’s water electrolysis system. It has not been disclosed which upcoming Dream Chaser mission will transport the system to the ISS.

This testing aims to validate the system’s performance in space prior to operations on the Moon. Sierra Space will manage the mission, working with the Center for the Advancement of Science in Space (CASIS) and NASA, while Tec-Masters will handle payload integration, leveraging their extensive ISS experience. Tec-Masters brings decades of experience in ISS payload integration and certification, ensuring that the electrolysis system will meet stringent spaceflight requirements. The primary objectives of the testing will be to validate that the system can produce oxygen, hydrogen, and electricity reliably in space, crucial for future lunar base operations. This collaboration marks a significant step toward realizing Honda’s vision of sustainable energy systems for space exploration and could reduce the cost and complexity of lunar colonization.

In a Lunar Colony, CRES has the potential to enable a self-sustaining human presence on the Moon, given its ability for in situ resource utilization. Key applications include:

Oxygen Production for Life Support: CRES’s water electrolysis process produces oxygen as a primary output, which can be directly used to sustain colonists, reducing the need for oxygen transport from Earth.

Hydrogen as a Fuel Source: CRES can generate hydrogen as a versatile fuel for various lunar activities, including powering rovers, construction equipment, or spacecraft for cis-lunar operations or return missions to Earth. It can also be used in fuel cells to generate additional electricity, enhancing energy flexibility.

Electricity Generation: The electricity produced by CRES through fuel cells can power the colony’s operations, such as lighting, heating, life support systems, communication equipment, and scientific instruments. This is particularly valuable during the lunar night in lower latitudes, when solar panels can’t generate power due to the absence of sunlight for 14 days.

Closed-Loop Water Recycling: One of CRES’s most significant advantages is its closed-loop design, where water is continuously recycled. Water produced as a byproduct of fuel cell operation is returned to the electrolysis system, minimizing water loss. This is crucial for a lunar colony, where water is a scarce and expensive resource to transport from Earth.

The adoption of CRES in a lunar colony could significantly reduce the need for resupply missions from Earth, lowering costs and logistical complexity. By producing essential life support resources, fuel and electricity on-site, CRES could enable a sustainable lunar economy, supporting long-term habitation which could become a hub for further space exploration, such as missions to Mars.

However, challenges remain, particularly around sourcing water for the system. The quantity and accessibility of lunar water are still being researched, with estimates suggesting ice deposits may be small and dispersed, requiring advanced extraction technologies. Water on the Moon is primarily found in the form of ice deposited in permanently shadowed craters by comets and asteroids over billions of years, especially at the lunar poles, with additional water molecules embedded in lunar soil and rocks due to impingement of the solar wind. Recent research confirms that in addition to water ice in the polar regions, hydration has been found in lower latitude sunlit areas, suggesting a variety of viable sources for CRES. Extraction methods could involve heating lunar regolith to release water or mining ice deposits, though the scale and efficiency of these processes remain areas of active study. The energy required for water extraction and the system’s scalability for a large colony also need further investigation.

Honda’s CRES represents a transformative technology for lunar colonization, offering a pathway to self-sufficiency by leveraging local resources. Its testing on the ISS and eventual integration with lunar water harvesting operations position it as a cornerstone for future space settlement, though ongoing research into water availability and system scalability will be critical for its success.