SAM: Space Analog for the Moon and Mars

Exterior view of SAM. Credits: samb2.space
Interior view of greenhouse controlled environment with depiction of SIMOC temperature, humidity, and carbon dioxide level control panel. Credits: samb2.space

Located at the iconic Biosphere 2 facility in Arizona, SAM is a hi-fidelity, hermetically sealed science center about to begin cutting edge research into environmental control and life support systems (ECLSS). The facility will host researchers to perform experiments on plant physiology, regolith chemistry, food cultivation and a host of other studies in the context of a space habitat analog.

Utilizing the original Test Module which completed three closed cycles to test water and human waste recycling prior to the main Biosphere 2 facility construction, SAM will be fitted with an airlock and pressurized enclosure including quarters for research crews to stay up to two weeks at a time.

Of particular interest, SAM in partnership with National Geographic, will help validate SIMOC, an interactive closed-loop life support system simulator based on authentic NASA data. Feedback from SAM will refine the SIMOC mathematical model that balances food, air, water, agriculture and solar energy to support humans in a closed ECLSS.

SIMOC was developed though a grant by Arizona State University’s Interplanetary Initiative. Unveiled at the Mars Society 23 Annual International Convention last October (see page 87 of the Conference Abstract) the software is licensed and hosted by the National Geographic Society for integration into classrooms globally where curricula is provided for teachers to get students involved as citizen scientists to design habitats to sustain human life on the Moon and Mars.

Screen shot of SIMOC habitat interactive simulation software. Credits: Kai Staats / National Geographic Society

As stated on the SAM at B2 website:

“There is no single-run experiment that results in the ideal solution for providing breathable air, recycled water, food and waste reprocessing. Rather, we will see an unfolding of experiments, findings, and prototypes for decades to come. Much as farming evolved from the art of crop rotation to the science of genetically modified organisms, living on the Moon, Mars, and in free space will demand constant improvements in our systems as more humans move to off-world homes.”

Kai Staats, Director at SAM, was a recent guest on The Space Show where he provided a history of the creation of the facility and his role in developing SIMOC.

Ceres megasatellite space settlement

a) Artistic rendering of a megasatellite constellation of habitats with inclined mirrors for collection of sunlight – detail of individual habitats shown in b). Credits: Pekka Janhunen

Pekka Janhunen of the Finnish Meteorological Institute, Helsinki, Finland has just posted a paper on the arXiv server describing his concept for a megasatellite space settlement in orbit around Ceres and constructed from materials from this dwarf planet in the asteroid belt. Ceres is chosen because of the availability of nitrogen and water needed for life support. A space elevator is proposed as an efficient means of lifting materials off the surface.

Janhunen works out the physics and mass budgets for a collection of settlements comprising the megasatellite, each providing 1g artificial gravity and a closed-loop life support system. The assemblage is made up of a collection of self contained rotating habitats which are interconnected and could potentially grow to house billions of people with 2000 square meters of living area per person. Each habitat would include soil thick enough to enable biomes with trees and ideal weather.

SSP covered another free space settlement concept by this author last April a bit closer to home at L5 in the Earth-Moon system. Janhunen discussed this duel-dumbbell design on The Space Show in May of last year.

Martian in situ manufacturing using chitosan biolith

Illustration of three applications of chitosan derived Martian biolith cast into different geometries including a wrench, freeformed material or an additive manufactured habitat model. Credits: Ng Shiwei, Stylianos Dritsas, Javier G. Fernandez via PLOS ONE

Working with simple chemistry suitable for an early Martian settlement, a team of researchers in Singapore has demonstrated that Martian biolith using chitosan derived from shrimp, with minimal energy requirements, could be used for rapid manufacturing of objects ranging from basic tools to rigid shelters. Ng Shiwei, Stylianos Dritsas, and Javier G. Fernandez publish their results in a paper in PLOS ONE.

Chitosan is chemically derived from chitin, the organic matrix produced by biological organisms incorporating calcium carbonate into rigid structures. Chitin would be a byproduct of food production in a closed-loop life support system on Mars.

Chitosan can form transparent objects similar in appearance and mechanical properties to plastic, which would be lacking in early stage Mars settlements. When processed with Martian regolith, the resulting Chitosan biolith produces a material with good mechanical properties and general utility for manufacturing on Mars.