Moonwards: making our future on the Moon

Conceptual illustration looking up the length of a Moon Town residential habitat built in a trench going down the crater wall. Plants cover its roof, walls, and foundation. Credits: Kim Holder, CC-BY 4.0. NOTE: all images are similarly credited

SSP has posted about Moonwards in the past.  Kim Holder, creator of the realistic virtual lunar colony online game was recently interviewed on Hotel Mars by John Bachleor of CBS Eye on World and David Livingston of The Space Show.  Kim’s website is starting to mature to a point where I thought it was time to get an update and a deeper dive into her vision of our future living on the Moon. I caught up with Kim last week via email.

SSP: Thanks for taking the time to collaborate on this post Kim.  You’ve said that accurately depicting and roleplaying the activities of living on the Moon in a colony called Moon Town built by, and shared by, the players will help show the world the benefits of space development and a positive future.  Why do you think a role-playing online game is the best vehicle to accomplish this vision?

KH: Because interacting over time with a detailed simulation allows people to absorb what it means. It allows people to pick up knowledge about space development as they play. That’s a kind of learning that sticks. And the more players expand the vision, creating an ever cooler place with more things to see and do, the more they will feel a connection with that vision. They will naturally think about it more, talk about it more, pass on things about it to their friends and family. The kinds of dialogues they are able to have about it will gain depth and breadth, the more they work on it and see how others have worked on it.

“We need to understand what’s coming and make sure we do this right.”

It’s long been said that simulations of this kind will become a major means of education and research once the software and hardware to make them matures. Well, we’re arriving at that day. It’s a question of properly designing them now, to best serve our needs. I think space development is clearly the best choice of theme for the first such simulated environment, and a game based on creation and collaboration is the best design paradigm for it. I’d say there is no issue in the world so misunderstood and undervalued. We need to understand what’s coming and make sure we do this right. Otherwise it will take longer to see the massive benefits, and there are lots of things that could go really wrong.

Depiction of an android accompanying a resident in the shared kitchen, dining area, and spa facility of a neighborhood in Moon Town

SSP: You’ve done a lot of research to make the future technology of Moonwards scientifically accurate to give users a realistic prediction of what it will be like to live and work in space.   Why is this important?

KH: There’s lots of places out there where people can enjoy a space fantasy, and I’m a fan of a bunch of them. But to bring home why it’s important to devote big resources to space development, we have to leave no doubt that the benefits we portray will really happen once enough space infrastructure exists. I’ve generally been conservative about what’s portrayed so there’s no gap where someone could say it’s not gonna happen because this or that is fanciful. This is of course difficult because there’s so much we don’t know.

It’s the medical stuff that’s especially hard to account for, as you well know, John. In order for people to enjoy the game it has to portray a beautiful, exciting place. If it doesn’t do that nobody will be interested and it won’t achieve anything. I decided not to build the town in a lava tube, the place widely recognized as the safest, easiest place to build at scale on the moon. The most important reason I chose a large, young crater instead was to present that beautiful, exciting place. However huge a cavern is – and lava tubes on the moon could be hundreds of meters wide and thousands long, in theory – I didn’t feel it could be filled with a city nearly as attractive as one in a crater. No matter that it gives complete protection from radiation and dust, and it’s relatively easy to pressurize the entire thing. Once we can, I’m pretty sure we’ll make big fancy cities in craters or mountains, not tunnels. We’ll do what it takes to create a healthy place to live that has the sunshine and big outdoor views humans have evolved with. I’ve had arguments with people about that but I stick to it. It gives me an opportunity to discuss what systems would be needed and how they could be made on the moon. It gives people a relatable way to learn about such things, and to ponder both the vast scale of this undertaking, and that it’s entirely feasible.

“This isn’t about exploring space. This is about changing human existence. We have to demonstrate this can really be done.”

As people play this game, I want real questions to well up in them for the game world to properly answer. If you want people to really question whether this kind of vast industry and construction is both possible and desirable in space, a place of beauty and wonder has to instill those questions. Then, they must be answered thoroughly with the best science we have. Moonwards isn’t shy about scale, we show things that couldn’t be built without a robotic workforce rivaling the human workforce that built the Panama Canal. When someone is convinced something like that can really be made, that person becomes a true convert. This isn’t about exploring space. This is about changing human existence. We have to demonstrate this can really be done.

Image of a Moon Town resident outside in a capsule spacesuit, on the roof of the first park, with its giant window. The main park is in the distance, its giant stone arches protecting the space from radiation but letting in lots of sun

SSP: Moonwards is open source to encourage collaboration among “Makers” to build out the community of Moon Town.  Who are these Makers and what qualifications do they need to participate?

KH: The communities we’ll be wooing directly will be those of space science and industry, and amateur game developers. We need a few more things done before actively bringing in a select few from those communities. The first set of Makers will advise us on design and test our collaboration tools. They’ll use those tools to add things to the game world once we’ve got the version that makes the process a pleasure. Beyond that point, the task is to grow a culture of Makers who decide themselves how the town develops. We just support that process – giving them more and better tools, adding new game destinations for them to work on (eventually starting with an O’Neill cylinder once Moonwards is established), helping polish what they make, and building a rapport with them so together we make the best vision of the future we can.

“Makers develop the major parts of the town, all the things that really require sound engineering.”

So, while initially we’ll be seeking out a small group of people with qualifications that leave no doubt they know how to design this simulation properly, once that group takes the lead in creating content, it will be their opinion of submissions that determines who joins the Maker ranks. We’ll set up the means for anyone to submit proposed content. A critique process will assist with refinements. If your submission meets standards, it’ll be approved and you become a Maker, with all the privileges that go with that. Anyone who does their homework and learns from feedback can acquire that status.

You see, Makers develop the major parts of the town, all the things that really require sound engineering. All such things need good review before being included, and also an active community that integrates new stuff into the whole, considering the overall design and needs of the town. There will be plenty of things that are the ordinary day to day parts of a living town that any player can create and add, and that’s just up to them, and anyone else who shares a space with them. They can make their own home and its contents, things for their neighborhood, shops and markets, even things like animals, robots, and human characters. Makers are a different deal. They expand the town itself and have a big voice in new cities. where to locate them, and how to portray them.

View from outside the ecosystem research lab, showing the ilmenite reactors producing iron and oxygen in the distance. Two robotic rovers are visible center right.

SSP: In the (hopefully near) future when the Full Town Life is realized, visitors will be able to cooperate using a Collaboration App to develop ideas and projects in a workshop space with a suite of 3D modeling tools.  How do you envision this functionality furthering space development?  Can you give some examples of how it would be used?

KH: (Rubs hands.) Well, I talked above about how Makers will be a culture of informed people able to make good realistic designs for space. So, let’s say a few of them are playing with ideas for systems to transport ore from mines to processing reactors. We’ll start with trucks designed for that. Maybe they wonder if conveyor belts are better for production beyond a certain scale. They draft something for that, and once they are done for the day, the work-in-progress is on display in the studio section of the main habitats. Someone passing by looks at it and realizes they haven’t accounted for the dust that will be flying around in much greater quantities in mining areas. They attach a note about it to the gears that are too exposed, perhaps including a quick 3D sketch of a protective casing, or a link to a library item that could be adapted for a fix. Someone else passes by, thinks it over, and leaves a note with a calculation of what production level would justify this and whether it makes sense. A third person takes a look, and adds a comment to the note about production levels concerning how ore quality could impact the calculation.

“…nothing stops real researchers from using our code and assets to help create simulations adequate for real engineering modeling.”

By the time the original team comes back to work on it some more, someone has proposed an alternate solution using a sort of cable car system with movable posts, and begun working on it in a nearby area of the studio. Someone’s suggested different kinds of buckets used to get the ore from the trench or shaft to the conveyor belt that then clip onto the belt and are taken away. They ask to officially join the team. Someone has provided a miniature map of the main mining zones for use in mocking up the routes for the conveyor belts so they can be optimized, and attached it to the project.

These things can all happen because people actually walk past other people’s work in the game. When they do, they are already in an environment that allows them to play around with the model and attach all sorts of things to it, without changing the version the team behind it is working on. Good design will create the best possible environment for collaboration we’ve ever had.

How much of that will transfer directly to the real world is impossible to say. We have hopes that with growth the quality and capabilities of the simulation aspect of the game will be so high, things created this way will genuinely shape real world designs. This is one of the reasons for the main project to be open source – that way nothing stops real researchers from using our code and assets to help create simulations adequate for real engineering modeling. Then, that can be contributed back to Moonwards and we can adapt it so the game is a better simulation. It can become a virtuous cycle.

Aside from whether real technology might actually be drafted in Moonwards, definitely people will pick up how to engineer by playing. There is huge potential for mentorship, training in creative problem solving, and evaluation of concepts in an environment that makes communicating complex ideas so much easier.

SSP: Eventually, there will be the capability of hosting events such as concerts, live plays, gallery displays, special interviews or discussions.  Why would this be an attractive place for visitors to experience events like these?

KH: The kinds of events that I imagine being really successful will draw on the environment, and the nature of the community. Let’s focus on large events, on a scale that requires high bandwidth to work. It’ll take a while to create that capability, but it’s the part that’s really fun.

“With amazing realism quickly becoming possible even in real time 3D rendering, … such events could be fantastic.”

If you go to a concert or a play, the avatars of the audience could be scaled down to be an inch tall, and be free to fly around a space half a meter high by 10 meters wide by 3 deep, arching around the front of the stage just a meter from the performers. You could see the avatars of the viewers closest to you, and anyone you came with, but those farther away could appear just as little lights. The performers could jazz up the event by switching at will between all kinds of avatars, and adding anything they want to the environment. With amazing realism quickly becoming possible even in real time 3D rendering, and live recording of real people in full 3D also quickly maturing, such events could be fantastic.

Of course, Moonwards is a tiny project compared to other ventures pushing into 3D platforms. But we have two advantages that could be a big deal. First, we are the first venture of this kind to be principally open source. Add-ons can be proprietary (some of ours will be, as will the server code), but the main bulk of the project will remain open source. This is attractive to people wishing to experiment with the medium, or who wish to be sure their personal data isn’t being exploited, or who would rather the Metaverse (aka the 3D web) doesn’t grow up to be dominated by a few giant companies, like social media is. It’s possible that could be a decisive factor in who grows over the next decade.

Second, our tribe is those who love space and futurism. If you want to hang out at events with our kind of people, then come to our events. Nobody else will offer a lecture about the formation of Lalande Crater in which the audience is inside a simulation of the impact event.

SSP: In May Moonwards launched a contest to begin upgrades to the virtual infrastructure of Moon Town.  Called “Create Lunar Infrastructure in Moonwards Baby!” or CLIMB!, the initiative was intended to draw in Makers to bring the game alive, with proposals submitted over the summer to compete for prizes.  How is the contest going?

KH: OK, part of me is tempted to skip this, but another part thinks it’s better to answer. Making this game has been hard up to now. Really, it’s going a lot better than it was – a lot – and we’ve already gotten farther along than most startup video game ventures get at this point. Still, we are a small team on a shoestring budget who go through many unexpected turns. Other tasks meant we were obliged to launch the contest later than we should have, with less resources than we’d have liked. Then an opportunity appeared to enter a business plan contest run by the National Space Society, taking place during the same time as CLIMB!. (Check it out – https://spacebizplan.nss.org/details/). That meant the person working on the contest – me – instead turned full time to writing the business plan. That includes moving up some revisions to the layout of Moon Town so they can be shown off in the plan.

We made some good contacts during the brief time we were actively promoting CLIMB!, but it seems clear there won’t be submissions this year. We’ll take what we’ve learned and make a bigger, better contest next year. We feel having regular contests for new content of various kinds will really help bring in Makers and spread the word.

SSP: Much of the laborious tasks in Moon Town are done by robots.  What will the inhabitants do there and what will be the economic benefits and incentives for average people to want to migrate there permanently?

“The answer to what people will do there is, what they are passionate about.”

KH: Ah the future – so much to think about. To scale up industry and transport in the Earth-moon system to the point where some goods from the moon can be sold for a profit on Earth, you really have to go all out with automation. You have to make maximum use of the fact the moon has no biosphere to harm, and turn all labor over to robots that can work in really dangerous environments. Once you manage to have robots make more robots using materials on the moon, and energy beamed from space solar power arrays powers the factories and transport, prices will drop and drop until you can compete with industry on Earth. Ok, if you buy that, then Moon Town is going to be the robot Mecca of the future. Robots don’t just do most of the laborious tasks, they do them all. Running a closed ecosystem on a world so hostile an unprotected person would die in less than a minute requires great care. People just plain aren’t trusted to always do everything important right. Robots do all that. The answer to what people will do there is, what they are passionate about.

I mean, it isn’t like robots won’t have taken most jobs on Earth by that time too. We’re going to have to decide how to assign value to things in a way that rewards merit in a world like that. What can humans do that even intelligent robots can’t? Things that have great emotional value to other humans. Things that help us define who we are. Arts. Sports. Caregiving. Spirituality. Exploration.

Now, that isn’t necessarily to say that a lot of average people will migrate permanently. At least, not to the town we are portraying first. It’s not a huge place, there is a lot a person would have to give up to live there. [See next question]. The city that comes after it would be better suited to welcome average people. The human population of Moon Town will be researchers and top engineers who benefit from being able to take a close look at their work on-site, artists, athletes, and a few administrators. Moon Town plans to embed depictions of their lives as stories woven into the world. Oh, also people with major disabilities who are taking advantage of how Moon Town permits body alteration on a level not legal on Earth, especially advantageous in a controlled, low gravity environment. And some people taking a shot at immortality. Literally.

SSP: Its been said that a space settlement will not be completely self-supporting and independent of Earth until children can be born and raised there.  Moonwards deals with human health in the Moon’s 1/6 gravity environment through the use of centrifuges to dose inhabitants for 3 hours a day of 1G conditioning to mitigate the known deleterious effects of lower gravity to human health.  But there appears to be no mention of children in Moonwards culture.  Given Moonward’s rigorous scientific accuracy, is the lack of children because of our knowledge gaps with respect to the gravity prescription?  Will this evolve over time as the Moonwards community is informed by advances in space medicine?

KH: Yes, it’s because of the knowledge gaps. It’s definitely completely unclear whether it’s possible to bear and raise healthy children on the moon. We also can’t anticipate in any way how we might work around that, if it isn’t possible. I’ll be comfortable depicting children in the O’Neill cylinder in orbit. We’ll get to that simulation in due course. With that option sitting there, why get into how to do it on the moon?

(PS – 3 hours a day is of course a total guess and was chosen to be relatively easy to work into gameplay. Media in the game will explain things like this.)

SSP: Speaking of centrifuges for human health in low gravity environments, your design of the health “Carousel” assumes a radius of 16 meters.  This relatively small size, as you have acknowledged, could lead to severe Coriolis effects potentially resulting in severe disorientation and nausea.  Have you considered a larger centrifuge design such as the one proposed by Gregory Dorais with a radius of 75 meters which could reduce the impact of Coriolis effects, and since Moonwards is depicted far enough in the future that this type of technology could be achievable?

KH: To be fair, the centrifuge portrayed right now is one of the first, in a hab that can’t accommodate anything bigger. The bet is that people who use the apparatus regularly adapt to the way it affects the inner ear, and then are able to use it without issue. This is the theory Al Globus puts forth, with a decent amount of evidence to back it up, based on experiments with centrifuges over the years. But as the town expands, centrifuges are made bigger and bigger.

I’m currently planning a thorough revisit to the town’s design. We are at a juncture in development where it makes sense to change and refine the models of the town, and I intend to take that pretty far. This time, the first habs built will be upright cylinders with rounded ends such that it’s possible to ride a bike around the walls so fast that you are pressed towards the wall with a force of one gravity. Nod of the hat to Jeff Greason for pointing that out. Then the first centrifuge will go in, not sure of the radius but at a guess, 40 meters. The bigger habs will be able to accommodate ones much larger still. But those will be in the hands of the Makers. I’m just making the first few things, and giving ample space for others to expand.

SSP: Currently, space exploration and development is primarily funded by government entities and is regulated by the Outer Space Treaty.  As such, these activities are by nature geo-political.  You’ve chosen not to deal with these challenges that will inevitably shape our future in space, and leap frogged ahead with the assumption that those issues have been solved.  Is the hope that people will be so attracted to the abundant resources and opportunities that Moonwards has to offer, that they will overcome their differences and come together to make it happen?

“Let’s focus on getting across how much better life will be if we pull this off. That’s what matters.”

KH: Heck, I don’t just assume they’ve been solved. I assume the very best decisions have been made along the whole journey, to lead to the very best outcome for space development.

The exercise here is to explore our potential. It’s also important to see how this could go wrong, but as soon as you get into that, you fail to communicate the thing that matters most. This isn’t another chapter in geopolitical expansion, akin to the colonial era. This goes right off the map of anything humanity has ever experienced.  Let’s focus on getting across how much better life will be if we pull this off. That’s what matters.


Visit Moonwards to download the game free of charge and start collaborating. Although somewhat dated, check out Kim’s appearance with Dr. Livingston, Haym Benaroya and myself on the Moonwards Panel at the 2017 Icarus Interstellar Starship Congress in Monterey, California.

An efficient biological intensive oxygen and sustenance system for life support

Rendering of a toroidal space habitat with 12 centrifuges containing gardening units and four composing modules providing an environmental control life support system for a crew of 6. Credits: Thomas Lagarde / International Astronautical Federation

Fully closed environmental control life support systems for long term human space missions are difficult to achieve. But its possible to get closer using a novel approach proposed by Thomas Lagarde in a paper presented at the 69th International Astronautical Congress in Bremen, Germany which took place in October 2018. Using a combination of rotating greenhouses and worm composting units, the system would significantly reduce resupply while producing air and food with equipment that accelerates plant growth while efficiently recycling waste.

Lagarde starts with the inputs and outputs of a crew of six and determines what the surface area required for greenhouses to produce nutritious crops for sustenance and life support. He assumes that inflatable modules like Bigelow Aerospace’s B330 design could be a starting point for the enclosures and then extends the concept to a torus combining the advantages of a solid shell module with that of an inflatable. The greenhouses utilize a rotating garden concept called an “omega garden unit” (OGU) based on an Omega Garden, Inc’s rotary hydroponics system which maximizes crop yield while minimizing space requirements. Growing plants under these conditions, i.e. with artificial gravity, has been shown to activate plant hormones called auxin, thereby increasing their growth rate. The use of an organic light-emitting diode source at the axis of the centrifuge provides a commercially available solution for optimal light exposure while saving space, energy and generating less heat.

To make significant progress toward closure of the life support system recycling loop, human waste and non-edible plant parts become worm food in composting units. This natural process can be accelerated under the right conditions, achieving exponential growth of the worm population but can be self-regulated as described in detail in the paper.

Lagarde sums up the research by saying: “After studying all the different aspects of plant growth and composting, we can conclude that the combination of a rotating garden and processing of organic products by worms will provide enough food and fresh air for a crew of 6 in a minimal space.”