Advocates for mining the Moon and asteroids for resources to support a space based economy are split on where to get started. Should we mine the Moon’s polar regions or would near-Earth asteroids (NEAs) be easier to access?
Joel Sercel, founder and CEO of TransAstra Corporation, is positioning his company to be the provider of gas stations for the coming cislunar economy. In a presentation on asteroid mining to the 2020 Free Market Forum he makes the case (about 10 minutes into the talk) that from an energy perspective in terms of delta V, NEAs located in roughly the same orbital plane as the Earth’s orbit may be easier to access for mining volatiles and rare Earth elements.
Scott Dorrington of the University of New South Wales discusses an architecture of a near-Earth asteroid mining industry in a paper from the proceedings of the 67th International Astronautical Congress. He models a transportation network of various orbits in cislunar space for an economy based on asteroid water-ice as the primary commodity. The network is composed of mining spacecraft, processing plants, and space tugs moving materials between these orbits to service customers in geostationary orbit.
On the other side of the argument, Kevin Cannon of the Colorado School of Mines in a post on his blog Planetary Intelligence lays out the case for the Moon being the best first choice. All of the useful elements available on asteroids are present on the Moon, and in some cases they are easier to access in terms of concentrated ore deposits. Although delta V requirements are higher to lift materials off the Moon, its much closer to where its needed in a cislunar economy. Trips out to a NEA would take a long time with current propulsion systems. In addition, he thinks mining NEAs would be an “operational nightmare” as most of these bodies are loose rubble piles of rocks and pebbles with irregular surfaces and very low gravity. This makes it hard to “land” on the asteroid, or difficult to capture and manipulate them. In an email I asked him if he was aware of SHEPHERD, a concept for gentle asteroid retrieval with a gas-filled enclosure which SSP covered in a previous post, but he had not heard of it. TransAstra’s Queen Bee asteroid mining spacecraft has a well thought out capture mechanism as well, although this concept like SHEPHERD are currently at very low technology readiness levels.
Cannon also makes the point that there is very little mass in the accessible NEAs when compared to the abundance of elements on the Moon.
“There’s more than enough material for near-term needs on the Moon too, and it’s far closer and easier to operate on.”
Finally, he believes that the Moon would be a better stepping stone to mining the asteroids then NEAs would be. This is because most of the mass in the asteroid belt is located in the largest bodies Ceres and Vesta. Operations for mining on these worlds would be more akin to activities on the Moon then on near-Earth asteroids.
What about moving a NEA to cislunar space as proposed by NASA under the Obama Administration with the Asteroid Redirect Mission? Paul Sutter, an astrophysicist at SUNY Stony Brook and the Flatiron Institute, investigates this scenario and suggests that at least the argument for these asteroids being too far away might be mitigated by this approach, although it would take a long time to retrieve them using solar electric propulsion, as recommended in the article. The trip time might be reduced with advanced propulsion such as nuclear thermal rockets currently under investigation by NASA.
It should be noted that TransAstra has both bases covered. They are working on innovations such as their Sun Flower™ power tower for harvesting water at the lunar poles as well as the company’s Apis™ family of spacecraft for asteroid capture and mining of NEAs.
Update 28 August 2021: Take a deep dive into TransAstra’s future plans with Joel Sercel interviewed by Peter Garretson, Senior Fellow in Defense Studies at the American Foreign Policy Council podcast Space Strategy.