When will the first human be born off Earth?

Space baby. Credits: scienceabc.com

One of the biggest challenges of space settlement facing humanity is procreation off world. We simply don’t know if its possible for a baby to be carried to term in less then one gravity. There are obvious ethical considerations of simply going there and trying it out. NASA is studying the problem but until we have a variable gravity centrifuge facility in space that will enable us to determine the “gravity prescription”, it will be a while before we have an answer.

In an article in The Space Review, Fred Nadis discusses some of the medical challenges of human reproduction in space and why one company, SpaceLife Origin, who’s mission was to enable human reproduction in space decided to suspend its planned missions for “Serious ethical, safety and medical concerns …”

These medical unknowns about reproduction in any gravitational field less then 1g is the obvious attraction of O’Neill type free space settlements which provide Earth normal gravity. But the huge scale and investment necessary to build such large scale settlements puts this approach far in the future. Al Globus thinks a better way might be to start with smaller spinning habitats in low earth orbit.

Asgardia’s has a key scientific goal of facilitating the first human childbirth in space which they believe is a crucial step on humanity’s “path to immortality as a species”. In preparation for that goal, the organization is creating the first sovereign nation in space. A good introduction to their plans can be found in an interview with Dr. Lena De Winne, the Head of Administration to the Head of Nation of Asgardia, who appeared on the Space Show recently.

Artist’s impression of the first human born in space. Credits: Asgardia

A map of the future of space enterprise

The Pathfinders’ Guide to the Space Enterprise. Credits: The Aerospace Corporation.

The Aerospace Corporation has created a visually stunning chart called “Pathfinders’ Guide to the Space Enterprise” in which they provide a glimpse into the nascent space economy based on hundreds of ideas from over 70 world-class space experts condensed into seven core themes about how the future could unfold. The analysis, which is both deep and thought provoking, identified two critical uncertainties shaping the the future of space development:

1. The degree in which space will be “commercialized.”
How much will space exploration and exploitation be designed to seed the commercial ecosystem?

2. The evolution and potential transformation of global power states.
What space-based leverage points could change the terrestrial power balance?

Their hope is to “…inspire your internal adventurer to think about how space can and will play a role in the future and how we get there.”

A simple inflatable Mars Habitat

Called “Space Nomad” the concept, conceived by Gábor Bihari at the University of Debrecen, Hungary and Thomas Herzig, CEO of Pneumocell Co., Vienna, Austria is described in paper available on Academia.edu. The elegant design takes into account the payload capacity of spacecraft of the near future and in situ resources available on Mars to arrive at a safe and feasible solution.

Artist’s rendering of a cross section of the Space Nomad habitat. This option of the settlement is made of several longitudinal inflatable tubes. The regolith ceiling protrudes to provide the proper shielding. The mirrors reflect sunlight into the structure all day. Credits: Gábor Bihari, Thomas Herzig

The main side wall is a tri-layer membrane with two gaps to provide insulation. The outer wall gap contains a vacuum and the inner one is gas-filled. The protruding ceiling provides shielding from radiation and protection from micrometeorites that impinge at high angles to the structure. The habitat is not completely closed as the design has a system for processing the Martian CO2 atmosphere, conditioning it for use by the greenhouses while producing breathable air and replenishing losses.

Artist’s illustration of the wall and roof structure of Space Nomad. Credits: Gábor Bihari, Thomas Herzig

A modified version of the habitat could be deployed at the Moon’s polar region as a preliminary step toward validation of the design before a Mars mission. Unlike the Mars settlement, this structure would have to be airtight and changes would be required to the mirror system.

Illustration of a modified circular version of Space Nomad as a proving ground for technology at the Moon’s polar region. Credits: Gábor Bihari, Thomas Herzig

Modular habitation system for human space exploration

Diagram of modular exploration system: pressure vessel, tertiary structures, power systems, EVA, and mobility. Credits: A. Scott Howe, Phd

At the 45th International Conference on Environmental Systems, A. Scott Howe, PhD presented a paper on a novel modular system for human habitation to support planetary and space exploration. The paper addresses the design requirements including mass and volume constraints to enable a variety of missions and environments. The concept was developed as recommended by NASA’s Evolvable Mars Campaign for a compact modular system and was assumed to be launched using the Space Launch System currently in the final stages of development. Howe settled on a horizontal module as the most appropriate with a single small diameter solution for fixed-sized habitats, expandable habitats, small rover cabins and a variety of other applications for both in-space and planetary surface operations.

Architectural design of living space within TESSERAE self-assembling space station

Artist’s rendering of the TESSERAE concept, showing self-assembling multi-module space station in orbit around Mars. Credits: TU Dortmund Fraunhofer Institute in collaboration with MIT Media Lab via AIAA

In a paper presented at the AIAA SciTech 2019 Forum, Ariel Ekblaw and Joseph Paradiso of the MIT Media Lab described a concept for a self assembling space station called TESSERAE, which stands for Tessellated Electromagnetic Space Structures for the Exploration of Reconfigurable, Adaptive Environments. The innovative design constructs buckminsterfullerene (“bucky ball”) modules from polyhedral tile sets that utilize a smart sensor network to detect bonds and actuate electromagnets to facilitate autonomous assembly. The resulting structure approximates a spherical shape thereby minimizing surface area (and launch cost) for a given livable space.

In collaboration with MIT Media Lab and as a visiting student, Anastasia Prosina, now the cofounder and CEO of the space architecture company Stellar Amenities, had 3 weeks to design the interior of the habitat to make the most efficient use of livable volume taking into account human factors and minimization of weight for a crew of 8 over a 3 month mission. The results of her work is showcased in the Stellar Amenities portfolio on the firm’s website. Of particular note is how the design borrowed from Japanese architectural concepts such as “Metabolism”, a post-war movement that blended ideas from architectural megastructures with those of organic biological growth. Using Human-Centered Design and a combination of skills in architecture, aerospace and art, the company creates functional yet pleasing environments for space habitats where mass and volume need to be minimized. There is even a meditation corridor for serene self reflection in space.

Layout showing the location of the Habitation Core within a TESSERAE module. Credits: Stellar Amenities
Meditation corridor within the TESSERAE habitat. Credits: Stellar Amenities

Update 24 April, 2022: Axiom Space’s Ax-1 mission to the ISS tested prototypes of the TESSERAE tiles in space. From the Axiom Space press release: “The prototypes launching on the Ax-1 mission include an extensive suite of sensing and electro-permanent magnets that monitor diagnostics – provide insight into the quality of bonds between tiles – and drive conformations. This scaled demonstration will build on previous microgravity evaluations of the TESSERAE experiment to explore a new frontier for in-orbit construction of satellites and future space habitats.”

TESSERAE in the ISS cupola — photo taken during the Axiom-1 mission. Credits: Ax-1 crew/ISS

Dr. Ekblaw provides and update on the Ax-1 mission at about 3 minutes into this Axiom Space Video.

EBIOS: toward closed-loop life support for space settlement

Artist rendering of EBIOS Experimental BIOregenerative Station. Credits: Interstellar Lab

Interstellar Lab has a mission to help build a future full of life on earth and beyond. To get started, the company plans modular villages on Earth designed as sealed facilities with environmental control and life support systems. EBIOS space-inspired communities will combine architecture, engineering, product design along with international collaboration in environmental science, agriculture, biochemistry, psychology and other disciplines. Each EBIOS will be a hospitality science center open to the public as well as scientists to facilitate awareness and needed research for self-sustaining space settlements. The company is developing methods and simulation software for integrated food production, water and waste systems to support human life in any environment.

Propellant production on Mars

Schematic of a Mars settlement methane production system for a single SpaceX Starship over a period of two years. Electrolysis and hydrogen storage are off the shelf. Sabatier reactor needs to be developed. Credits: Michel Lamontagne / marspedia.org

Early missions to Mars such as Robert Zubrin’s Mars Direct architecture will require propellant production for the trip home. Methane can be produced in situ on the red planet’s surface through the basic chemical reaction CO2 + 4H2 → CH4 + 2H2O. A French chemist named Paul Sabatier discovered back in 1897 that this reaction could be facilitated by a nickel catalyst in the presence of hydrogen and carbon dioxide at elevated temperatures. Since water ice is present on Mars, hydrogen could be produced though electrolysis of water. Combining these two reactions into a methane production system, Michel Lamontagne has provided a schematic of the whole process on marspedia.org. By design, the SpaceX Starship uses methane for fuel. The company may want to prioritize development of a flight-ready Sabatier reactor for this system to enable the transportation infrastructure needed for supplying a settlement until it can become self sufficient.

Artist rendering of a SpaceX Starship lifting off near a Mars settlement. Credits: SpaceX / Flickr

Lava Hive: ISRU Mars habitat

Stepwise illustration of the casting process to produce the Lava Hive; (1) deposition of foundation base, (2) regolith is gathered and sintered into a flow channel, (3) molten basalt from the sand/regolith is poured into the channel and allowed to solidify, (4) the next layer of regolith is spread across, and another channel sintered, (5) layer by layer the structure is constructed, (6) loose, un-sintered regolith is excavated from the structure, revealing the completed dome. Credits Aidan Cowley, et al.*

In a paper posted on Academia.edu, the 3rd prize winner for the 2015 NASA 3D Printed Mars Habitat Centennial Challenge called Lava Hive is described by a team* of European researchers. The habitat is produced by additive manufacturing via a ‘lava-casting’ construction technique and utilizing recycled spacecraft structures. Innovations include ‘re-use’ of discarded landing vehicles as part of the central habitat, 3D printed adjacent structures connected to the central habitat and use of a novel ‘LavaCast’ process to fabricate solid structures resistant to radiation and thermal cycling.

Illustration of the Lava Hive. The central habitat core is shown with the smaller 3D printed satellite structures clustered around it. Credits: René Waclavicek, LIQUIFER Systems Group, 2015

The Lava Hive Mars settlement has a number of advantages including a modular design with the ability to expand or adapt to changing mission requirements while “living off the land” with a simple ISRU process utilizing Martian soil, thereby reducing the amount of mass that would need to be launched from Earth.

* Authors of this paper are: Aidan Cowley, Barbara Imhof, Leo Teeney, René Waclavicek, Francesco Spina, Alberto Canals, Juergen Schleppi, Pablo Lopez Soriano

Dome: an innovative Martian base concept

Image of Dome during the day. Credits: InnSpace

InnSpace, a team of space dreamers in Poland has developed a Mars base concept called “Dome” which was selected among the best projects entered in the First Colony on Mars competition, organized as part of the Kuala Lumpur Architecture Festival.

The innovative design uses shape memory materials that respond to the significant temperature swings on Mars. Adjusting to the daily extremes, petal-shaped portions of the dome extend toward the base center providing exposure to natural light while creating an enclosure for additional space and radiation shielding. The moving sections include self- cleaning solar panels.

Once the sun goes down, the petals return to their initial location adding insulation to the habitat during the cold of night.

Creative use of technology envisioned by InnSpace and others applied to the extremes of off-Earth environments will be essential for space settlement.

Image of Dome at night with central petals retracted. Credit: InnSpace

Lava tubes big enough for large space settlements on the Moon and Mars

Image of Lava tubes on the surface of Mars as photographed by ESA’s Mars Express spacecraft. Credits: ESA/DLR/FU Berlin/G Neukum / NewScientist

Space advocates have long speculated that lava tubes on the Moon or Mars would provide an ideal protective enclosure for space settlements. The benefits include protection from radiation, micrometeorite bombardment, temperature extremes…the list goes on. Now, in a study published in Earth-Science Reviews, researchers at the the Universities of Bologna and Padua have found that lava tubes on these worlds could be 100 to 1000 times larger then on Earth, because of their lower gravity and the resultant effect on volcanism. Such roomy and stable subsurface chambers would be ideal for spacious space settlements.

Image of Olympus Town, a fictional colony built inside a lava tube on Mars from the National Geographic series of the same name. Credits: Framestore / Wired