Breakthrough mission architecture for mining lunar polar ice

Joel Sercel of Trans Astronautica Corporation was recently awarded a Phase II NIAC grant for a Lunar Polar Mining Outpost (LPMO) that promises to greatly reduce the cost of commercializing propellant production on the Moon. The system utilizes two patented innovative concepts for generating power and processing regolith. The first invention is a several meters tall solar reflector tower called a Sun Flowerâ„¢ to gather sunlight at the permanently illuminated areas near the poles and reflect it down to megawatt level solar arrays near the outpost. The second concept called Radiant Gas Dynamic (RGD) mining combines microwave and infrared radiation to sublimate ice out from the regolith for storage in cryotraps on electric powered rovers. The outpost elements are designed to be delivered to the lunar surface using Blue Origin’s New Glenn rocket and Blue Moon lander.

Sercel states that “…LGMO promises to vastly reduce the cost of establishing and maintaining a sizable lunar polar outpost that can serve first as a field station for NASA astronauts exploring the Moon, and then as the beachhead for American lunar industrialization, starting with fulfilling commercial plans for a lunar hotel for tourists”

Diagram of Lunar Polar Propellant Mining Outpost (LPMO) concept
Credits: Joel Sercel

Easy extraction of lunar water with Aqua Factorem

Philip Metzger of the University of Central Florida (UCF) has just been awarded a Phase I NIAC grant to investigate an innovative water harvesting process that will be cheaper then conventional methods.

“This simple architecture requires the minimum number of in-space elements, and notably does not require an in-space propellant depot, so it provides the lowest cost and lowest risk startup for a commercial operation. The study will also test the innovative Aqua Factorem process through laboratory experiments, and this will produce basic insights into the handling of lunar resources”

Revised 6 May 2020: UCF/Today has an update on this story.

An illustration of what the UCF developed process could look like on the moon. Credit: NASA and Jessica Woodward/UCF

Masten’s instant lunar landing pad

The Movave, CA company has just received a NASA Innovative Advanced Concepts (NIAC) Phase I grant to develop an innovative method to mitigate damaged due to abrasion from high-velocity regolith ejected by lunar lander exhaust. Masten’s Flight Alumina Spray Technique (FAST) injects alumina particles into the rocket plume to create a coating over the regolith at the landing site.

FAST instant landing pad deployment during lunar landing. Source: Matthew Kuhns,
Masten Space Systems Inc

Executive order authorizes the commercial use of space resources

The document states that “Americans should have the right to engage in commercial exploration, recovery, and use of resources in outer space, consistent with applicable law. Outer space is a legally and physically unique domain of human activity, and the United States does not view it as a global commons. Accordingly, it shall be the policy of the United States to encourage international support for the public and private recovery and use of resources in outer space, consistent with applicable law”

MAXIM – Maximum Impact Moon Mission

The University of Southern California’s Department of Astronautical Engineering has just published the final report of Dr. Madhu Thangavelu’s, course ASTE 527 Space Concepts Studio, the theme of which features the MAXIM architecture proposed for NASA’s Artemis program for return of humans to the moon. Be sure and watch the recorded presentation of the report which features the classic video “Wanderers” with commentary written and narrated by Carl Sagan. The class is held each fall and has an archive of each year’s reports, an excellent repository of creative concepts for space development.