Resilient ExtraTerrestrial Habitats

Shirley Dyke, Professor of Mechanical Engineering and Civil Engineering at Purdue University is the head of the school’s RETH (Resilient ExtraTerrestrial Habitats) Institute. Her work seeks an understanding of what characteristics make habitats safe through “cyber physical testing”, a discipline that combines computer models with physical testing to validate results. A habitat’s resilience level is paramount to this endeavor, which results in intelligently designed structures that mitigate risks of numerous hazards to humans anticipated in the lunar environment. Her team models the effects of meteoroid impacts, moon quakes, problems with lunar regolith (which is highly abrasive) and others that may impact the performance of outposts on the Moon.

Credits: Purdue University photo illustration/Mark Simons

Project “Lunark Habitat”

A danish design company called SAGA Space Architects has developed an origami-like folding structure for space habitation. Designed for two astronauts, the exterior is composed of an aluminum frame layered with solar cells”, while the interior has living quarters with desks and shelves. The designers, Sebastian Aristotelis and Karl-Johan Sorensen will test the facility this fall in arctic conditions for three months in Greenland.

Design of the LUNARK Mark 1 Habitat, an origami-inspired expandable moon shelter.
Credit: SAGA Space Architects
LUNARK
Credit: SAGA Space Architects

The Artemis Accords

The Trump Administration is working with international partners to create a regulatory framework for administration of “safety zones” around future lunar mining installations to prevent damage or interference from competing entities operating nearby.

This outstanding view of the whole full moon was photographed from the Apollo 11 spacecraft during its trans-Earth journey homew
Image Credit: NASA

Lockheed Martin’s McCandless Lunar Lander

Selected by NASA as a pre-qualified provider for the Commercial Lunar Payload Services (CLPS) program, the company offers commercial lunar mission services including pre-launch integration and testing of payloads, launch, transportation to the Moon’s surface, power and data handling, and deployment of payloads (e.g rovers). Lockheed Martin published a user guide for the McCandless Lander in September of last year.

Image Credit: Lockheed Martin

Named for astronaut Bruce McCandless perhaps best known for the iconic image of him flying untethered in Earth orbit while testing the Manned Maneuvering Unit during the Shuttle program, the lander honors his legacy after working for Lockheed Martin for over two decades as an advocate for space exploration and commercial space development.

Photo by Robert Gibson courtesy of NASA

Let there be Lunar Flashlight

NASA’s Jet Propulsion Laboratory is developing a CubeSat that will utilize near-infrared lasers and an onboard spectrometer to prospect for ice in the permanently shadowed craters at the Moon’s south pole. The suitcase size spacecraft will inform future Artemis missions on where to begin in-situ resource utilization of this valuable commodity for space settlement

This artist’s concept shows the Lunar Flashlight spacecraft, a six-unit CubeSat designed to search for ice on the Moon’s surface using special lasers. The spacecraft will use its near-infrared lasers to shine light into shaded polar regions on the Moon, while an onboard reflectometer will measure surface reflection and composition. Image credit: NASA/JPL-Caltech

Pros and Cons of Trump’s Executive Order on Encouraging International Support for the Recovery and Use of Space Resources

SpaceWatch.Global examines arguments in support and against the EO. Christopher Johnson of Secure World Foundation states in the position in favor:

“The US would like to [be] the leading nation in the use of space resources. It’s worth noting that other States are also interested in space resources, such as Luxembourg, and others.”

On the side arguing against the EO, Dimitra Stefoudi of the University of Leiden says:

“Applied to outer space, the concept of global commons could be interpreted as prohibiting rights over resources found in that area, particularly for commercial purposes, and would be contrary to the US policy of promoting such rights for commercial actors.”

Breakthrough mission architecture for mining lunar polar ice

Joel Sercel of Trans Astronautica Corporation was recently awarded a Phase II NIAC grant for a Lunar Polar Mining Outpost (LPMO) that promises to greatly reduce the cost of commercializing propellant production on the Moon. The system utilizes two patented innovative concepts for generating power and processing regolith. The first invention is a several meters tall solar reflector tower called a Sun Flower™ to gather sunlight at the permanently illuminated areas near the poles and reflect it down to megawatt level solar arrays near the outpost. The second concept called Radiant Gas Dynamic (RGD) mining combines microwave and infrared radiation to sublimate ice out from the regolith for storage in cryotraps on electric powered rovers. The outpost elements are designed to be delivered to the lunar surface using Blue Origin’s New Glenn rocket and Blue Moon lander.

Sercel states that “…LGMO promises to vastly reduce the cost of establishing and maintaining a sizable lunar polar outpost that can serve first as a field station for NASA astronauts exploring the Moon, and then as the beachhead for American lunar industrialization, starting with fulfilling commercial plans for a lunar hotel for tourists”

Diagram of Lunar Polar Propellant Mining Outpost (LPMO) concept
Credits: Joel Sercel

Easy extraction of lunar water with Aqua Factorem

Philip Metzger of the University of Central Florida (UCF) has just been awarded a Phase I NIAC grant to investigate an innovative water harvesting process that will be cheaper then conventional methods.

“This simple architecture requires the minimum number of in-space elements, and notably does not require an in-space propellant depot, so it provides the lowest cost and lowest risk startup for a commercial operation. The study will also test the innovative Aqua Factorem process through laboratory experiments, and this will produce basic insights into the handling of lunar resources”

Revised 6 May 2020: UCF/Today has an update on this story.

An illustration of what the UCF developed process could look like on the moon. Credit: NASA and Jessica Woodward/UCF

Masten’s instant lunar landing pad

The Movave, CA company has just received a NASA Innovative Advanced Concepts (NIAC) Phase I grant to develop an innovative method to mitigate damaged due to abrasion from high-velocity regolith ejected by lunar lander exhaust. Masten’s Flight Alumina Spray Technique (FAST) injects alumina particles into the rocket plume to create a coating over the regolith at the landing site.

FAST instant landing pad deployment during lunar landing. Source: Matthew Kuhns,
Masten Space Systems Inc