Want to eat like a Martian in an environmentally friendly manner?

The Martian Diet. Illustration of a plate with various foods
Credits: Kevin Cannon / https://eatlikeamartian.org/

Kevin Cannon shows you how with his Eat Like a Martian project. In a Tweet today, the planetary geologist and postdoctoral researcher at University of Central Florida announced plans for revamping his website as well as other R&D and educational outreach activities to be managed by undergraduate students. According to the website, “The ‘Martian Diet’ offers environmental and ethical benefits over traditional Western habits: no mass suffering of caged animals, and sharp cuts in land, water, energy use, and carbon emissions.”

Student concept for a crewed lunar rover in support of Artemis

Image depicting EMPRESS. Credits: SEDS-UPRM

When the first woman and next man return to the Moon under the Artemis Program, they will need a mobile scientific platform to assist with exploration of the lunar south pole. Under the Revolutionary Aerospace System Concepts – Academic Linkage (RASC-AL) competition, a team of Students for the Exploration and Development of Space (SEDS) at the University of Puerto Rico, Mayaguez (UPRM) won 1st Place in the contest with their Exploration Multi-Purpose Rover for Expanding Surface Science (EMPRESS). The rover would land at Shackleton crater at the lunar south pole in 2023 taking samples and exploring the region in preparation for the first crewed Artemis mission in 2024.

The rover is envisioned to include two robotic arms and a suite of seven scientific instruments to characterize the lunar surface composition as well as other high priority astrophysical investigations. One the proposed instruments is a neutron spectrometer that could sense the amount of hydrogen in the regolith using data from maps compiled by the Volatiles Investigating Polar Exploration Rover (VIPER) which will survey the lunar south pole for the presence of volatiles and water ahead of the Artemis Missions. This could pave the way for ice mining operations and eventual space settlements in a cislunar water economy.

University of Puerto Rico at Mayagüez winning SEDS team of the 2020 RASC-AL Virtual Forum. Credits: RASC-AL

The current state of the U.S. space industrial base

Credits: USSF-DIU-AFRL

The U.S. Space Force, Air Force Research Laboratory and the Defense Innovation Unit just completed a workshop on the state of the U.S. space industry. The virtual event, hosted by New Space New Mexico, brought together more than 120 representatives across the federal government, industry, and academia to access the current health of the America’s space industry and to provide recommendations for strengthening that industrial base. The resulting report called “State of the Space Industrial Base 2020” has just been released this month.

The workshop focused on 6 key areas thought to be the locus of future space industry activities:

  • Space policy and finance tools
  • Space information services
  • Space transportation and logistics to, in and from cislunar space and beyond.
  • Human presence in space for exploration, space tourism, space manufacturing and resource extraction
  • Power for space systems to enable the full range of emerging space applications
  • Space manufacturing and resource extraction

Recommendations included:

  1. Industry should aggressively pursue partnerships with the US government to develop and operate joint commercial, civil and defense space capabilities. These partnerships should jointly fund developing capabilities that benefit from but are not heavily reliant on US government investment and revenue for their commercial viability.
  2. Entrepreneurs with innovative and potentially dual-use technologies must improve the protection of their intellectual property from unintended foreign assimilation, including protecting their networks from cyber exfiltration attempts, and avoiding exit strategies that transfer intellectual property to foreign control hostile to US interests.
  3. Businesses should engage across the US educational system to guide and develop the future STEM workforce to fuel the future space economy, to include funding for undergraduate scholarships/loans for STEM students, internships and providing space professionals to support instruction in space subjects.
  4. Industry should improve ties and partnerships with domestic and allied parts, subcomponent and subsystem manufacturers to strengthen trust and resilience in space supply chains.

Self-replicating fungi radiation shielding for deep space settlements

Without adequate shielding, humans will be bombarded with lethal galactic cosmic radiation in deep space. Credits: NASA / scitechdaily.com

Galactic cosmic radiation poses a significant risk to humans in deep space. If a type of shielding could be found that could be “grown” through biotechnology starting from microscopic sources, significant savings in mass needed to be launched from Earth could be realized. It is already known that certain fungi can convert high-energy radiation into chemical energy through a process called radiosynthesis, analogous to photosynthesis in plants. Fungi have been found thriving in extremely radioactive environments such as the Chernobyl Nuclear Power Plant and even on the exteriors of spacecraft in Earth orbit.

In a paper just uploaded to the preprint server for biology bioRxiv, results of a study carried out on the International Space Station have shown that a microbial lawn of the fungus C. sphaerospermum can be cultivated in microgravity and not only consumes and thrives on radiation, it provides shielding that if scaled up, could sufficiently protect humans in deep space settlements.

Orbite Corporation forms space hospitality business around civilian training

Anoushah Ansari, the first female civilian spaceflight participant. Credits: spaceadventures.com

The Seattle-based start up envisions a Spaceflight Gateway and Astronaut Training Complex for new spaceflight participants and their families. One of the founders, Jason Andrews was quoted in Space News stating “There are now four new human-capable vehicles going into operation this year. The 2020s will be the decade of commercial human spaceflight.”

Virgin Galactic and others will host their own training programs but Orbite will help grease the skids so to speak, by offering first time space travelers physical, psychological and other training to enhance their spaceflight experience.

Biotechnological strategies for a sustained human presence on Mars

A stepwise strategy for the application of biotechnology to address four key challenges of Martian settlement is presented in a Comment in Nature Biotechnology. As settlement progresses, a phased developmental approach is proposed starting on Earth with gradual migration of industry to Mars for the production of food, materials, therapeutics and waste reclamation toward an efficient closed-loop life support system.

Incremental integration of biotechnology into Mars mission designs – Credits: Shannon N. Nangle, et al. via Nature Biotechnology

New L5 space settlement concept published by NSS

(a) Spinning duel-dumbbell space settlement with elevator shaft and central docking ports, (b) with ringroad, cylindrical solar panels and greenhouse areas indicated (green). Credits: Pekka Janhunen / NSS Space Settlement Journal

The spinning dual-sphere orbital colony would house 200 settlers completely shielded by asteroid material and under 1G artificial gravity. The business case is promising if launch costs come down to $300/kg. The new paper was just posted on the NSS Space Settlement Journal, an open access journal chuck full of papers on space settlement enabling technologies.

Experiencing the Overview Effect

First coined by philosopher Frank White in his book of the same name, the Overview Effect instilled a profound cognitive change of awareness for astronauts who have made it to space thus far. When seeing the Earth from space these individuals report having an overwhelming sense of wonder and awe, unity with nature and all of humanity. Hopefully, more of us will be able to experience this phenomenon in the near future when space becomes more accessible to more people. Until then, you can get a sense of what they felt in a YouTube series called NASA Down to Earth.