Leveraging Starship for lunar habitats

Conceptual overview of the lunar Rosas Base derived from a SpaceX Starship tipped on its side and covered with regolith. Credits: International Space University, Space Studies Program 2021 Team*. The name of the base is in memory of Oscar Federico Rosas Castillo

SSP has examined some of the implications of SpaceX’s Starship achieving orbit, such as an imminent tipping point in U.S. human spaceflight and launch policy. We’ve also discussed how if its successful, Starship will bring about a paradigm shift in the settlement of Mars and how the spacecraft could be used to determine the gravity prescription.

During Elon Musk’s recent Starship update from Boco Chica, Texas he said that he was “highly confident” that Starship would reach orbit this year. He also predicted that the cost of placing 150 tons in LEO could eventually come down to as low as $10 million per launch, and that “…there are a lot of additional customers that will want to use Starship. I don’t want to steel their thunder. They’re going to want to make their own announcements. This will get a lot of use, a lot of attention….”

“Once we make this work, its an utterly profound breakthrough in access to orbit….the use cases will be hard to imagine.” – Elon Musk

One such potential use case was worked out in detail by a team* of students last year during the International Space University’s (ISU) Space Studies Program 2021 held in Strasbourg, France. Called Solutions for Construction of a Lunar Base, the project used the version of Starship currently under development by SpaceX for the Human Landing System component of NASA’s Artemis Program as the basis for a habitat on the Moon. The concept was also described in a paper at the 72nd International Astronautical Congress in Dubai last October. The mission of the project was:

“To develop a roadmap for the construction of a sustainable, habitable, and permanent lunar base. This will address regulatory and policy frameworks, confront technological and anthropological challenges and empower scientific and commercial lunar activities for the common interest of all humankind.”

The team did an impressive job working out solutions to some of the most challenging issues facing humans living in the harsh lunar environment like radiation, micrometeorites, and hazardous lunar dust. They also dealt with human factors, physiological and medical problems anticipated under these conditions. Finally, the legal aspects as well as a rigorous financial analysis was conducted to support a business plan for the base in the context of a sustainable cislunar economy. The report is lengthy and challenging to summarize but here are some of the highlights.

A decommissioned Starship forms the primary core component of the outpost having its fuel tanks converted to living space of considerable volume. This has precedent in the U.S. space program when NASA modified an S-IVB stage of a Saturn V to create Skylab. The team envisions extensive use of a MOdular RObotic Construction Autonomous System (MOROCAS) outfitted with specific tools to perform a variety of activities autonomously which would reduce the need for extravehicular activities (EVA) thereby minimizing risks to crew. The MOROCAS would be utilized to tip the Starship on its side, pile regolith over the station for radiation protection and a range of other useful functions.

Medical emergencies were considered for accidents anticipated for construction activities in the high risk lunar environment. The types of injuries that could be expected were assessed to inform plans for needed medical equipment and facilities for diagnosis and treatment.

As discussed by SSP in a previous post, hazards from lunar regolith must be mitigated in for any activities on the moon. The solutions proposed included limiting dust inhalation through monitoring and smart scheduling EVAs, the use of dust management systems utilizing electrostatic removal mechanisms and intelligent design of equipment. In addition, landing sites and travel routes would be prepared either through sintering of regolith or compaction to prevent damage to structures by rocket plumes.

Funding of the Rosas Base was envisioned to be implemented via a public/private partnership administered by an international authority called the Rosas Lunar Authority (RLA). The RLA management would be structured as an efficient interface between participating governments while being capable of responding to policy and legal challenges. It would rely on public financing initially but eventually shift to private financing supplemented by rental of the base to stakeholders and interested parties.

Finally the team examined the value proposition driving establishment of the base. Sociocultural benefits, scientific advancements and technology transfer would be the primary driving factors. Initial market opportunities would be targeted at the scientific community in the form of data and lunar samples. Follow-on commercial activities that would attract investors could include launch services to orbit, cislunar spacecraft services, propellent markets in lunar orbit and LEO, communications networks in cislunar space and commercial activities on the surface such as supplies of transportation and mining equipment, habitats, and ISRU facilities.

The surface of the Moon provides exciting opportunities for scientific experimentation, medical research, and commerce in the cislunar economy about to unfold in the next decade. The unique capabilities of Starship and the solutions proposed in this report support a sustainable business model for a permanent outpost like the Rosa Base on the Moon.

Conceptual illustration of an emerging cisluar economy. Credits: International Space University, Space Studies Program 2021 Team*

An executive summary of the project is also available.

__________

* ISU Space Studies Program 2021 participants:

Moon-Mars dumbbell variable gravity research facility in LEO

Conceptual illustration depicting the deployment sequence of a LEO Moon-Mars dumbbell partial gravity facility serviced by SpaceX’s Starship. Left: Starship payloads being moored by a robot arm. Center: 1.6 m ID inflatable airbeams (yellow) play out from spin access and mate with dumbbell end modules. Rectangular solar arrays deploy by hanging at either end as spin is initiated via thrusters at Mars module. Right: Full deployment with Starship and Dragon docked at spin axis hub. Credits: Joe Carroll via The Space Review

There may be no single human factor more important to understand on the road to long term space settlement than determination of the gravity prescription (GRx) for healthy living in less than Earth normal gravity. What do we mean by the GRx? With over 60 years of human space flight experience we still only have two data points for stays longer than a few days to study the effects of gravity on human physiology: microgravity aboard the ISS and data here on the ground. Based on medical research to date, we know that significant problems arise in human health after months of exposure to microgravity. To name a few, osteoporosis, immune system degradation, diminished muscle mass, vision problems due to changes in interocular pressure and cognitive impairment resulting memory loss and lack concentration. Some of these problems can be mitigated with a few hours of daily exercise. But recovery upon return to normal gravity takes considerable time and we don’t know if some of these problems will become irreversible after longer term stays. We have virtually no data on human health at gravity levels of the Moon and Mars, as shown in this graph by Joe Carrol:

Graph of the correlation between human health vs gravity showing the two data points where we have useful data. Whether the relationship is a linear function or something more complex is an unknown of great importance for space settlement. Credits: Joe Carrol presentation at Starship Congress 2019 and Jon Goff post on Selenium Boondocks Nov 29, 2005

The more important question for permanent space settlements is can humans have babies in lower gravity? If we go by the National Space Societies’ definition, an outpost will never really become a permanent space settlement until it is “biologically self-sustaining”. We evolved over millions of years at the bottom Earth’s gravity well. How will amniotic fluid, changes in cell growth, fetal development and human embryos be affected during gestation under lower gravity conditions on the Moon or Mars? There are already indications that problems will arise during mammalian gestation, at least in microgravity as experienced aboard the ISS.

To answer these questions, Joe Carroll suggests the establishment of a crewed artificial gravity research facility in LEO which he described last month in an article in The Space Review. He proposes a Moon-Mars dumbbell with nodes spinning at different rates to simulate gravity on both the Moon and Mars, which covers most of the planetary bodies in the solar system where settlements would be established if not in free space. The facility could be launched and tended by SpaceX’s Starship once the spacecraft is flight worthy in the next few years in parallel with Elon Musk’s plans to establish an outpost on Mars. Musk may even want to fund this facility to inform his long term plans for communities on Mars. If his goal is for the humanity to become a multiplanetary species, surely will want to know if his settlers can have children.

Carroll’s design connects the Moon and Mars modules with radial structures called “airbeams” which will allow crew to access the variable gravity nodes in a shirtsleeve environment. The inflatable members are composed of polymer fiber fabric which can be easily folded for storage in the Starship payload bay. Crews would be initially launched aboard Dragon until the Starship is human rated.

“Eventually, rotating free-space settlements will get massive enough to use other shapes, but dumbbells plus airbeams seem like the key to useful early ones.”

The paper addresses details on key operating concepts, docking procedures, emergency protocols, and the implications for long term settlement in the solar system.

There may even be a market for orbital tourism to experience lower gravity that could make funding for the facility attractive to space venture capitalists, especially if it is located in an equatorial orbit shielded from ionizing radiation by the Earth’s magnetic fields. As the technology matures, older tourists may even want to retire in orbital communities that offer the advantage of lower gravity as their bodies become frail in their golden years.

Humankind’s expansion out into the solar system depends on where we can survive and thrive in a healthy environment. If ethical clinical studies on lower mammals in a Moon/Mars dumbbell clears the way for a healthy life in lunar gravity then we can expand out to the six largest moons including our own plus Mars. If the data shows we need at least Mars gravity, then the Red Planet or even Mercury could be potential sites for permanent settlement. But if nothing below Earth normal gravity is tolerable, especially for mammalian gestation, it may be necessary to build ever larger rotating O’Neillian free space settlements to expand civilization across the solar system. There are vast resources and virtually unlimited energy if we need to do that. But it will take considerable time and careful planning to establish the vast infrastructure needed to build these settlements. If human physiology is constrained by Earth’s gravity then space settlers will want to know this information soon so that the planning process can be integrated into space development activities about to unfold on the Moon and beyond. If Musk finds out that Mars inhabitants cannot have children and wants to establish permanent communities beyond Earth, would he change course and switch to O’Neillian free space settlements?

“If we do need sustained gravity at levels higher than that of Mars, it seems easier to develop sustainable rotating settlements than to terraform any near-1g planet.”

Listen to Joe Carroll answer my questions about his Moon/Mars dumbbell facility from earlier this month on this archived episode of The Space Show.

Reproduction off Earth and its implications for space settlement

Launch of the Space Shuttle Atlantis (STS-66) on November 3, 1994. The mission carried an experiment called NIH.Rodent 1, the first of only two study’s to date on rats launched at mid-pregnancy and landed close to full term to study the effects of microgravity on reproduction. Credits: NASA

In a MDPI Journal Life paper, Alexandra Proshchina and a team* of Russian researchers summarize the research that has been performed thus far on reproduction of invertebrates in space. As mentioned in the article, the only data we have on mammalian reproduction in microgravity since the dawn of the space age is from two experiments carried out over 26 years ago. The studies looked at pregnant rats launched aboard the Space Shuttle on missions STS-66 and STS-70 in 1994 and 1995 respectively, and there have never been any births of mammals in space. This huge knowledge gap on reproduction in space is problematic for human space settlement. Yet Elon Musk, The Mars Society, and other groups are charging ahead with plans for cities on Mars. What if we discover that humans cannot have healthy babies in 0.38g? SSP has covered the quest for determining the gravity prescription before looking at JAXA’s effort to at least start experimenting with artificial gravity in space, albeit on adult mammals (mice). We are still waiting for JAXA’s published results of 1/6g experiments carried out in 2019.

The data from the Space Shuttle program only looked at part of the gestation period (after 9 days) and only in microgravity. The results did not bode well for reproduction in space. Some findings “…clearly indicate that microgravity, and possibly other nonspecific effects of spaceflight, can alter the normal development of the brain itself.”

Histological cross section through a representative rat brain from NIH.Rodent 1 experiment from STS-66. Left side (a) is low magnification and right side (b-d) are high magnification. Red arrows show areas of neurodegeneration. 1 – Nasal cavity, 2 – olfactory nerve, 3 – olfactory bulb, 4 – eye, 5 – cortex telencephali, 6 – hippocampus, 7 – fourth ventricle, 8 – cerebellum. Credits: Alexandra Proshchina et al.*

So we have this one piece of data for reproduction in microgravity and nothing in higher gravitational fields except what we know here on Earth in 1g.

Would partial gravity like on the Moon or Mars be sufficient for normal fetal development in rats (or mammals in general, especially humans) during the full gestation period? If problems are identified could it be extrapolated to human reproduction? The fact that homo sapiens and their ancestors evolved on Earth in 1g for hundreds of thousands of years is a big red flag for future space colonists that hope to settle on the surface of planetary bodies and have children.

We don’t know how lower gravity conditions could affect embryonic cell growth. How would the changes in surface tension and embryo cell adhesion be altered in these environments? We have very little data on cellular mechanisms and embryonic alterations that lower gravity may induce that could affect fetal development.

“There are also many other questions to be answered about vertebrate development under space flight conditions.”

A recent report on giving birth in space by SpaceTech Analytics looks at many of the factors that need to be considered for human reproduction off Earth. Most problems could be potentially mitigated through engineering solutions such as radiation protection, medical innovations tailored for space use, life support technology, etc. In this entire presentation the authors gave very little consideration to partial gravity affects on human embryos and child birth. One slide (number 70) out of 85 discusses these issues.

It is clear that more and longer term experiments will be necessary to determine how partial gravity affects the reproduction and development of mammals before humans settle space. Some researchers are actually considering genetic modification to allow healthy reproduction in space, and the ethical considerations associated with this course of action. Obviously, such a drastic methods would come only if there was no other alternative. One would think that building O’Neill type habitats rotating to produce 1g of artificial gravity would be preferable to such extreme measures.

Clearly, we need a space based artificial gravity laboratory to carry out ethical clinical studies on the gravity prescription for human reproduction, starting with rodents and other lower organisms. SSP recently covered a kilometer long version of such a facility that could be deployed in a single Falcon Heavy launch. And don’t forget Joe Carroll’s proposal for a LEO partial gravity test facility. Doesn’t it make sense to invest in such a facility and do the proper research before (or at least in parallel to) detailed engineering studies of colonies on the Moon or Mars intended for long term settlement? This research could inform decision making on where we will eventually establish permanent space settlements: on the surface of smaller worlds or in free space settlements envisioned by Gerard K. O’Neill. Elon Musk may want to consider such a facility before he gets too far down the road to establishing cities on Mars.


* Authors of Reproduction and the Early Development of Vertebrates in Space: Problems, Results, Opportunities: Alexandra Proshchina, Victoria Gulimova, Anastasia Kharlamova, Yuliya Krivova, Nadezhda Besova, Rustam Berdiev and Sergey Saveliev.

Freedom Engineering in Space

A tongue-in-cheek Freedom Engineering poster encouraging space settlers to produce oxygen through plant growth as an alternative to dependency on centralized oxygen production facilities. Credits: Charles Cockell

At the 24th Annual International Mars Society Convention held October 14 – 17, Dr. Charles Cockell, professor of Astrobiology in the School of Physics and Astronomy at the University of Edinburgh, gave a talk on what he calls Freedom Engineering. His viewpoint was also published in a paper via the journal Space Policy in August of 2019. Cockell makes the case that due to the extreme constraints imposed by the laws of physics on living conditions in space settlements, freedom of movement will necessarily be restricted. Such conditions could be exploited by tyrannical governments to limit social, political and economic freedoms as well. To address these concerns Cockell suggests that colony designers utilize proactive engineering measures in planning off Earth communities to maximize liberty in the space environment. For example, rather then one centralized oxygen production facility or method that may be leveraged by a despot to control the population, it is suggested that settlements be designed with multiple facilities distributed widely and if possible, other types of oxygen production (e.g. greenhouses) be employed to minimize the chance of monopolization.

This engineering philosophy raised many questions among colleagues of mine so I reached out to Dr. Cockell for an interview via email to provide answers. He graciously agreed and I’m very grateful for his responses.

SSP: How is Freedom Engineering different from standard engineering practices of designing for redundancy to prevent single point failure?

CC: There is a strong overlap. For example, if you want redundancy, you multiply oxygen production. That would also be a desired objective to minimize the chances of monopolistic control over oxygen. So often the objectives are the same. However, I suggest that freedom engineering is a specific focus on engineering solutions that cannot be used to create coercive extraterrestrial regimes, which is not always the same as redundancy. For example, we might minimize the use of cameras and audio devices to monitor habitats for structural integrity, an objective consistent with general engineering demands, but potentially antithetical to human freedoms.

SSP: Since the added costs are significant and we may not be able to follow these practices initially, how do we get around the problems you mention after being on the Moon a decade or two? Wouldn’t the forces of tyranny have already won?

CC: Liberty is never cheap in resources and human effort. You can take a cost-cutting approach and hope that tyrannical regimes don’t take hold in a settlement or you can plan before hand to minimize their success, even if that involves more cost. However, as many freedom engineering solutions are compatible with redundancy, it is not necessarily the case that introducing measures like maximizing oxygen production and spacesuit manufacture motivated by considerations on liberty would add significantly to a cost already incurred by ensuring redundancy.

Liberty is never cheap in resources and human effort.

SSP: How do we avoid centralized control of transportation? Will we have two or more landing pads, several sets of rockets? – e.g., Musk, Bezos, and ULA?

CC: I would say that maximizing the number of entities with transportation capabilities is a good idea. Here too, we would want to achieve this for redundancy, but it would also reduce the chances of monopolization and the isolation of a settlement (particularly if leaving the settlement can only be achieved with one provider). This could also include multiplying the physical number of rocket launch and arrival points.

SSP: There are always non-redundant systems, which you acknowledge. At some level there are critical infrastructures that cannot be made redundant because then we get into an infinite loop. If a tyrannical power wanted to control everything on the Moon, for example, that is where they would focus their control. Can you comment?

CC: That’s true. It goes without saying that, as on Earth, a determined despot with enough support can find ways to take over a society. However, as the framers of the US Constitution understood, if you can introduce enough checks and balances you can make tyranny an outcome that requires many of those to fail. You reduce the risk. So by minimizing the number of single point controls in an extraterrestrial society you never eliminate the chances of tyranny, but you reduce the number of options open to those with tyrannical tendencies.

It goes without saying that, as on Earth, a determined despot with enough support can find ways to take over a society.

SSP: How would a tyrannical off-Earth settlement get its citizens when moving to such a settlement would seem like a terrible idea?

CC: It’s true that an overtly tyrannical settlement may eventually find it difficult to recruit people and might therefore fail. One might hope that this would be a feedback loop that would discourage tyranny in space. However, when building free government[s], it’s a good idea to assume the worse to achieve the best, i.e. assume that people will attempt to, and can, create a tyranny, and then build a system that minimizes this possibility. It’s also worth pointing out that once people are in a settlement, they will be physically isolated under some governance power. Just as it isn’t trivial to remove a tyranny on Earth that has a population corralled under it once it is established, it may not be easy to free a settlement once it has a population under its control. It is worthwhile to attempt to design societies that avoid this possibility from the beginning.

SSP: Would a space settlement economy with multiple competing companies providing essential needs such as life support, obviate the requirement for engineering redundancy since it would be more difficult for a tyrannical government to take over all the means of production?

CC: Yes, I think in many ways multiple competing companies is a form of redundancy – providing many conduits for production and minimizing single points of control or failure. Maximizing productive capacity is essential. I would mandate some basic level of oxygen production capability, for example, that any settlement must be capable of producing to keep people alive, and then try and stimulate a private market in fashionable oxygen machines of various kinds, different oxygen production methods etc. Of course, one should not be utopian. A coercive monopoly could still control a lot of this, but in general the more entities that produce vital resources, the more likely real choice can emerge in some form.

SSP: One reasonable measure that can be taken that doesn’t fall under normal engineering approaches is standardizing data transparency. It might make sense that it should be a matter of public record, and easily assessable, the records of who does what with vital resources and how activities that seriously impact human safety are managed. This can be done without compromising anyone’s intellectual property. The full light of day can be good protection especially when used proactively, and establishing such standards would head off the opportunity to wave things away as bias or smear campaigns. Open-source approaches to data are already a big thing for all the space agencies and may be the best course of action. Do you have an opinion on this philosophy?

CC: I think this is essential. The freedom engineering approach I suggest is just one mechanism for reducing coercive governance, but a free society is constructed from many other needs. In some of my previous papers I have discussed exactly this – the need for transparency in information about oxygen production, who is funding it, and how etc. A general culture of openness is necessary. There may be some novel approaches such electing members of the settlement by lot to take part in meetings to do with oxygen or water production, for instance, and write public reports. Corporations will find all this very annoying of course, but the wider culture of liberty will be enhanced by a very ‘leaky’ society with respect to information. Other essential things are a free press (even if that is just informal lunar or Martian newspapers), transparency in elections for running the settlement, and perhaps maximum terms on people involved in health and safety tasks to create fluidity in the network of officialdom that oversees the potentially large number of health and safety concerns with respect to radiation, dust, production of essential items.

Corporations will find all this very annoying of course, but the wider culture of liberty will be enhanced by a very ‘leaky’ society with respect to information.

An efficient biological intensive oxygen and sustenance system for life support

Rendering of a toroidal space habitat with 12 centrifuges containing gardening units and four composing modules providing an environmental control life support system for a crew of 6. Credits: Thomas Lagarde / International Astronautical Federation

Fully closed environmental control life support systems for long term human space missions are difficult to achieve. But its possible to get closer using a novel approach proposed by Thomas Lagarde in a paper presented at the 69th International Astronautical Congress in Bremen, Germany which took place in October 2018. Using a combination of rotating greenhouses and worm composting units, the system would significantly reduce resupply while producing air and food with equipment that accelerates plant growth while efficiently recycling waste.

Lagarde starts with the inputs and outputs of a crew of six and determines what the surface area required for greenhouses to produce nutritious crops for sustenance and life support. He assumes that inflatable modules like Bigelow Aerospace’s B330 design could be a starting point for the enclosures and then extends the concept to a torus combining the advantages of a solid shell module with that of an inflatable. The greenhouses utilize a rotating garden concept called an “omega garden unit” (OGU) based on an Omega Garden, Inc’s rotary hydroponics system which maximizes crop yield while minimizing space requirements. Growing plants under these conditions, i.e. with artificial gravity, has been shown to activate plant hormones called auxin, thereby increasing their growth rate. The use of an organic light-emitting diode source at the axis of the centrifuge provides a commercially available solution for optimal light exposure while saving space, energy and generating less heat.

To make significant progress toward closure of the life support system recycling loop, human waste and non-edible plant parts become worm food in composting units. This natural process can be accelerated under the right conditions, achieving exponential growth of the worm population but can be self-regulated as described in detail in the paper.

Lagarde sums up the research by saying: “After studying all the different aspects of plant growth and composting, we can conclude that the combination of a rotating garden and processing of organic products by worms will provide enough food and fresh air for a crew of 6 in a minimal space.”

Determining the gravity prescription for long term space settlement

Credits: Dai Shiba et al.* / Nature. http://creativecommons.org/licenses/by/4.0/

If humanity is to ever move off Earth, clearly we will need to be able to have children wherever we establish long term settlements. But, as humans have evolved over millions of years in Earth’s gravitational field, normal gestation may not be possible on the Moon or Mars. This is probably the most important physiological question to be answered before outposts are permanently occupied on these worlds. We can shield people from radiation, we can recycle wastes and use ISRU to replenish consumables for life support. But we may find that artificial gravity either in free space rotating habitats or on planetary surface settlements is required for settlers to have healthy children. In fact, when I asked Dr. Shawna Pandya, a physician and expert in space medicine about it on The Space Show, she said “…that is the million dollar question”.

Numerous studies have shown the deleterious effects of long term microgravity on human health. So we know that humans will need some level of gravity for sustainable occupation. But what level is enough to stave off the effects of lower gravity on human health and what about reproduction under these conditions? Plus, there is the problem of how to run ethical clinical studies to answer these questions? The Japan Aerospace Exploration Agency (JAXA) has started research in this area by studying mice under variable gravity conditions aboard their Kibo module on the International Space Station using a Multiple Artificial-gravity Research System (MARS). Results of this first ever long term space based mouse habitation study with artificial gravity were published in a paper called Development of new experimental platform ‘MARS’Multiple Artificial-gravity Research System—to elucidate the impacts of micro/partial gravity on mice in Nature back in 2017. The authors* of the paper found that significant decreases in bone density and muscle mass of the mice reared under microgravity conditions were evident when compared to a cohort raised under 1G indicating that artificial gravity simulating the surface of the Earth may prevent negative health effects of microgravity in space. The next obvious step was to test the mice in 1/6 G simulating conditions on the Moon. This experiment was ran in 2019 but the results have not yet been published. SSP has reached out to JAXA with an inquiry on when we can expect a report. This post will be amended with an update if and when an answer is received.

Reproduction of mice or other mammals has not been studied in space under variable gravity conditions. The problem screams out for a dedicated space based artificial gravity facility such as the Space Studies Institute’s G-Lab and others (e.g. Joe Carroll’s Partial Gravity Test Facility ). Even if such a laboratory existed, how would ethical clinical studies on higher mammal animal models to simulate human physiology during pregnancy be carried out? Answering this question will come first before the million dollar one.

June 2, 2023 Update: JAXA finally released the results of their 2019 study on mice subjected to 1/6 G partial gravity in a paper in Nature in April. There is good news and not-so-good news. The good news is that 1/6 G partial gravity prevents muscle atrophy in mice. The downside is that this level of artificial gravity cannot prevent changes in muscle fiber (myofiber) and gene modification induced by microgravity. There appears to be a threshold between 1/6G and Earth-normal gravity, yet to be determined, for skeletal muscle adaptation.

______________________________

* Authors of Development of new experimental platform ‘MARS’—Multiple Artificial-gravity Research System—to elucidate the impacts of micro/partial gravity on mice: Dai Shiba, Hiroyasu Mizuno, Akane Yumoto, Michihiko Shimomura, Hiroe Kobayashi, Hironobu Morita1, Miki Shimbo, Michito Hamada, Takashi Kudo,
Masahiro Shinohara, Hiroshi Asahara, Masaki Shirakawa and Satoru Takahash

Countering the naysayers of space settlement

Space Colonies Torus Interior
Artist concept of a free space settlement. Credits: Don Davis / NASA

Al Globus has just published a set of cogent responses to objections made by those who question why space settlement should be considered as a goal for humanity. A link to the piece is on his website Free Space Settlement. His analysis first defines what space settlement is, then why it should be pursued and finally refutes point by point, arguments against the endeavor.

Globus positions the case for space settlement around surviving and thriving. Surviving centers on dispersing humanity’s eggs outside of Earth’s basket as a hedge against the risk of catastrophic threats such as “…climate change, major asteroid hits, supervolcano eruptions, nuclear war, pandemic, nearby supernova, and technology run amok.” Even if humanity does survive these potential hazards, in about 5 billion years our sun will transition to a red giant making life on Earth uninhabitable. Clearly our future on the home planet is not assured forever. At current population growth rates, we will have exhausted Earths resources long before then.

Thriving recognizes that expanding into space is the next step in human evolution. Globus reminds us that “…living things want to grow and expand, to thrive, not simply exist.” By settling space “…resource wars are unlikely and unnecessary because our Sun provides billions of times the energy used on Earth and the asteroids provide enough material to make new orbital land hundreds of times greater than the surface area of the Earth.”

To the objection that space is too expensive and that funds would be better spent on Earth, there are two talking points. First, it is always prudent to allocate a small percentage of outlays on planning for the future. NASA’s funding in 2020 was less then 1/2 of a percent (0.48%) of total US expenditures. The US spends quite a bit more on social programs so this argument is very weak. Second, the benefits we receive from space activities in our economy pay significant dividends. SSP has covered the return on space investments and the value of space infrastructure previously.

The next general category of objections falls under “It Can’t Be Done” such as farming in space is not feasible, radiation levels are too high and weightless conditions are intolerable for humans. Globus easily addresses each concern with technological solutions well represented on SSP’s ancillary pages.

An interesting set of protestations are described as “Power Plays” raising the specter of space wars, settlements attacking Earth or cult factions taking over space settlements. And there is the ominous possibility of “Deudney threats” as described in Daniel Deudney’s negative prediction of our space future in his book Dark Skies: Space Expansionism, Planetary Geopolitics, and the Ends of Humanity”. Globus handled these objections quite well and links to his critique of the book in the The Space Review.

Other miscellaneous complaints by doubters are addressed easily by Globus. His talking points are valuable tools to be used in persuasive dialogs with those who may be uninformed on the promise of space development. They should help in building consensus toward moving peacefully out into the solar system and establishing prosperous settlements throughout the galaxy.

Evolutionary computational design of closed ecosystems using artificial gravity

Orbiting Modular Artificial-Gravity Spacecraft (OMAGS) concept for testing ecosystems in space – Exterior and cutaway views. Credits: Gregory Dorais / NASA

One of the most important technologies to realize permanent space settlements is the development of self-sustaining controlled ecological life support systems (CELSS). This will require replication of independent self-contained subsets of Earth’s biosphere containing select flora and fauna under controlled conditions for eventual human life support. But are 100% closed ecosystems (with the exception of the exchange of radiation and information) beyond Earth possible? Could a series of controlled evolutionary experiments using machine learning be carried out on controlled ecosystems in space under variable gravity conditions to rapidly optimize the key variables needed to identify the smallest possible CELSS for long term human survival? Gregory Dorais, a research scientist at NASA Ames Research Center, thinks so and describes the strategy in a paper called An Evolutionary Computation System Design Concept for Developing Controlled Closed Ecosystems.

Dorais introduces his concept with a brief description of Closed EcoSystems (CESs) and early efforts by NASA to develop a CELSS for space settlement. Of particular concern are the challenges of putting humans in the equation. There are consequences related to the ratio between human biomass and non-human biomass in ecosystems. On Earth this ratio is low so the ecosystem can self-regulate compensating for imbalances. But in a space biosphere, this ratio in the life support system is comparatively huge leading to significant challenges in maintaining equilibrium. For example, the ISS needs frequent resupply of consumables by spacecraft to replenish losses in the life support system. Wastes that cannot be recycled are either incinerated in the Earth’s atmosphere or exhausted into space. A completely closed system that is self-sustaining has not yet been developed.

Dorais’ design concept for an experimental testbed can be used to explore the viability of different biomass ratios of various combinations of larger animal species and eventually humans. The system consists of a collection of independent CESs controlled and interconnected to generate data for machine learning toward optimizing long term viability. Gradually, the size of the animals in the CES can be increased evolving over time with the ultimate goal of human life support. To kick things off, an Orbiting Modular Artificial-Gravity Spacecraft (OMAGS) is proposed, with room for 24 CESs housed in a 150cm radius centrifuge with appropriate radiation shielding capable of testing the ecosystems under different fractional gravity conditions. The spacecraft is envisioned to be placed in an elliptical orbit in cis-lunar space.

To scale illustration of the OMAGS proposed mission orbit in cislunar space. Credits: Gregory Dorais / NASA

The OMAGS spacecraft has been sized to fit in a SpaceX Falcon Heavy payload fairing.

Illustration of a OMAGS payload sized for a SpaceX Falcon Heavy launch vehicle. Credits: Gregory Dorais / NASA

A NASA patent and tech transfer fact sheet entitled Closed Ecological System Network Data Collection, Analysis, Control, and Optimization System has been issued for this innovation under the NASA Technology Transfer Program.

In a related presentation delivered in November 2018, Dorais says “Once CESs are demonstrated to reliably persist in space, within specified gravity and radiation limits, it is a small step for similar CESs to persist just about anywhere in space (Earth orbit, Moon, Mars, Earth-Mars cycler orbit, asteroids, …) enabling life to permanently extend beyond Earth and grow exponentially.”

Are we on the right track for space settlement?

Artist depiction of an O’Neill cylinder from the novel K3+. Credits: Katie Lane (Full distribution rights reserved by Erasmo Acosta)

Erasmo Acosta thinks we might be headed in the wrong direction, that we may be suffering from planetary chauvinism and the better way may be to colonize space with O’Neill cylinders. He makes his case in a post on the Predict section of Medium. SSP has long been a strong proponent of free space O’Neill-type settlements, the advantages of which are numerous, not the least of which is 1G artificial gravity to prevent detrimental human health issues that may arise for occupants of colonies with lower gravity on the Moon or Mars. Such space settlements would house millions of people in perfect 70 degree controlled weather without the threat of natural disasters.

Jeff Bezos has advocated for this philosophy with the aim of moving heavy industry off world and preserving Earth’s environment for “residential zoning”. Recent developments seem to indicate he may be spending more of his time focusing on the realization of that vision.

Acosta, a retired software engineer, feels so strongly that O’Neill cylinders will be the preferred mode of space settlement he wrote a novel called K3+ which depicts a future in the next century where humans will be living in thousands of O’Neill cylinders in a “post-scarcity” civilization of virtually unlimited resources. Acosta envisions Mercury as a source of raw materials:

“The planet’s proximity to the sun, its low gravity, and metal-rich concentration make it the ideal source of raw materials for constructing thousands of O’Neill cylinders.”

In a previous post on Predict, he explains how to kickstart a program for harnessing space resources to fabricate these colonies.

After many years of construction, multiple rings of rotating habitats would eventually encircle the sun harnessing a vast amount of the energy output of our star approaching the configuration of a Dyson sphere.

Artist depiction of multiple rings of rotating habitats around the sun. Credits: Katie Lane (Full distribution rights reserved by Erasmo Acosta)

Finally, as a tribute to the father of free space colonies and an inspiration for a generation of space settlement advocates, I’d like to close out this post with a link to the just released trailer for the much anticipated documentary: The High Frontier, The Untold Story of Gerard K. O’Neill.

SAM: Space Analog for the Moon and Mars

Exterior view of SAM. Credits: samb2.space
Interior view of greenhouse controlled environment with depiction of SIMOC temperature, humidity, and carbon dioxide level control panel. Credits: samb2.space

Located at the iconic Biosphere 2 facility in Arizona, SAM is a hi-fidelity, hermetically sealed science center about to begin cutting edge research into environmental control and life support systems (ECLSS). The facility will host researchers to perform experiments on plant physiology, regolith chemistry, food cultivation and a host of other studies in the context of a space habitat analog.

Utilizing the original Test Module which completed three closed cycles to test water and human waste recycling prior to the main Biosphere 2 facility construction, SAM will be fitted with an airlock and pressurized enclosure including quarters for research crews to stay up to two weeks at a time.

Of particular interest, SAM in partnership with National Geographic, will help validate SIMOC, an interactive closed-loop life support system simulator based on authentic NASA data. Feedback from SAM will refine the SIMOC mathematical model that balances food, air, water, agriculture and solar energy to support humans in a closed ECLSS.

SIMOC was developed though a grant by Arizona State University’s Interplanetary Initiative. Unveiled at the Mars Society 23 Annual International Convention last October (see page 87 of the Conference Abstract) the software is licensed and hosted by the National Geographic Society for integration into classrooms globally where curricula is provided for teachers to get students involved as citizen scientists to design habitats to sustain human life on the Moon and Mars.

Screen shot of SIMOC habitat interactive simulation software. Credits: Kai Staats / National Geographic Society

As stated on the SAM at B2 website:

“There is no single-run experiment that results in the ideal solution for providing breathable air, recycled water, food and waste reprocessing. Rather, we will see an unfolding of experiments, findings, and prototypes for decades to come. Much as farming evolved from the art of crop rotation to the science of genetically modified organisms, living on the Moon, Mars, and in free space will demand constant improvements in our systems as more humans move to off-world homes.”

Kai Staats, Director at SAM, was a recent guest on The Space Show where he provided a history of the creation of the facility and his role in developing SIMOC.