Where should we get oxygen on the Moon?

Artist impression of activities at a Moon Base which could include oxygen production. Credits: ESA – P. Carril

Kevin Cannon of the Cannon Group at the Colorado School of Mines can help find the answer. In a recent post on his Planetary Intelligence blog, the Assistant Professor of Geology and Geological Engineering describes a trade study comparing extraction of oxygen from regolith such as Metalysis’ ESA funded study to getting O2 from ice mining at the lunar poles as favored by NASA. Nothing stands out from a cursory look at the pros and cons of each approach.

In a more data driven analysis to compare apples to apples, Cannon examines energy costs of mining oxygen and plots it against the amount of bulk material that has to be processed to produce an equal amount of O2 from different sources ranging from plain silicate regolith to various grades of water ice endmembers. The analysis even includes processing material from various types of asteroid resources. The types of ice/regolith mixtures can vary widely as described in one of Cannon’s tweets.

Artist’s impression of different types of water ice / regolith endmembers. Credits: Lena Jakaite / strike-dip.com / Colorado School of Mines

Cannon’s analysis reaches the conclusion that “At 1.5-2% water by weight, icy regolith is essentially on par with O2-from-regolith on a joule for joule basis. In other words, if you had a pile of icy regolith already sitting on the surface, it makes sense to throw it out if the grade is less than about 1.5% and extract oxygen directly from the silicate regolith instead.”

More brilliance from the mind of Kevin Cannon can be found in these posts: Want to eat like a Martian in an environmentally friendly manner?, The logistics of dining off Earth, SpaceX will need suppliers for Mars settlement, The accessibility of lunar ice. And of course, don’t forget to visit kevincannon.rocks.

ArmorHab mission architecture for Mars Colonization

ArmorHab transport habitat configured for artificial gravity. Credits: Dark Sea Industries LLC / University of New Mexico / The Mars Society

The innovative ArmorHab mission architecture was presented at the Mars Society Conference in 2016. This novel approach should be considered as part of a strategy for settlement of the Red Planet. The concept integrates several engineering solutions for habitat design to address radiation protection, life support, and transportation while leveraging in situ resource utilization to enhance crew health, safety and reduce costs.

The basic building block of the architecture is a cylindrical Mylar shell wrapped in superconductive tape providing radiation protection through emulation of a magnetosphere. This structure is encased in a protective aerogel for strength and insulation including layers of water ice to further protect the crew from micrometeorites and algae bioreactors for scrubbing carbon dioxide for life support.

ArmorHab wall structure with superconducting tape for radiation protection and algae bioreactors for life support. Credits: Dark Sea Industries LLC / University of New Mexico / The Mars Society

Leveraging Buzz Aldrin’s Mars Cycler invention, the plan starts by building out infrastructure in cislunar space including automated factories on the Moon, then expanding out to Mars with space stations, cycling habitats and connecting “trucks” to provide transport to and from the surface of each destination.

Illustration of cycler model showing six TransportHabs, three space stations and a Mars Truck. Credits: Dark Sea Industries LLC / University of New Mexico / The Mars Society

First demonstration of wireless power transmission in space

Left – Image of the Photovoltaic Radio-frequency Antenna Module (PRAM). Credits: of U.S. Naval Research Laboratory. Right: X-37B orbital test vehicle. Credits: Boeing

The first on-orbit demonstration of wireless power transmission, technology that could eventually support elements of a space solar power satellite has just been completed and published in the IEEE Journal of Microwaves. This experiment, the first flight test of a solar-to-RF Photovoltaic Radio-frequency Antenna Module (PRAM) lovingly referred to as a “sandwich module”, was performed on the U.S Airforce’s X-37 Orbital Test Vehicle, the launch of which SSP covered last May. Preliminary results have duplicated in space the expected power transmission that was tested on the ground pre-flight. Although testing is just getting started, the results show proof of concept of this prototype PRAM paving the way for the next phase of the Space Solar Power Incremental Demonstrations and Research (SSPIDR) project planned by Air Force Research Laboratory. The primary objective of SSPIDR is delivery of power to forward deployed expeditionary forces on Earth which would assure energy supply with reduced risk and lower logistical costs. The technology could eventually be used for commercial energy production.

Modular solar-to-RF panels based on the PRAM concept will enable very large radio frequency power beaming apertures to be assembled from a single panel design leading to scalability, lower mass and reduced costs.

Depiction of the PRAM functional mechanism for solar power satellites. Credits: Christopher T. Rodenbeck et al. / IEEE Journal of Microwaves

The next step in Phase 1 of the the SSPIDR project will be the world’s first space-to-ground power beaming demonstration of a solar to-RF modular panel currently planned for 2023.

Breakthrough: New aluminum alloy for radiation resistant spacecraft

Credits: Advanced Science Open Access / Wiley‐VCH GmbH

In space, conventional aluminum alloys tend to degrade when exposed to stellar-radiation such as solar flares or coronal mass ejections resulting in softening of the material to the point of dissolving over time. This property has ruled out aluminum as a lower mass material suitable for space structures…until now.

A new blend of aluminum has been discovered that may provide light weight radiation hardened material for protective hulls of spacecraft. The new research by Matheus A. Tunes et al.* was published in Advance Science. Using a metallurgical strategy called “crossover alloying,” the researchers combined 5xxx (AlMg) with the 7xxx (AlZn) alloy series obtaining beneficial properties of both such as high formability and high strength. The new amalgam was then age hardened to form a complex crystal structure of Mg32(Zn,Al)49 called a “T-Phase” that when subjected to heavy ion bombardment representative of stellar radiation, achieved a high degree of radiation tolerance. The results of the research show that the alloy is a promising candidate for applications in space.

* Authors of the Advance Science paper: Matheus A. Tunes, Lukas Stemper, Graeme Greaves, Peter J. Uggowitzer, Stefan Pogatscher.

Redwire manufactures the first 3D printed ceramic in space

Image of Ceramics Manufacturing Module (CMM), a commercial manufacturing facility that produces ceramic parts in microgravity for terrestrial use. Credits: Redwire/Made in Space

Made in Space, a recent acquisition of Redwire, has just for the first time successfully manufactured a ceramic part in their Ceramics Manufacturing Module on the ISS using additive manufacturing. The demonstration could stimulate demand in low Earth orbit from terrestrial markets which will be a key driver for space industrialization. Redwire claims that the parts, which included a turbine blisk (bladed disk) and other test pieces, demonstrate that the CMM can produce ceramic parts that exceed the quality of turbine components made on Earth.

According to Redwire’s press release: “CMM aims to demonstrate that ceramic manufacturing in microgravity could enable temperature-resistant, reinforced ceramic parts with better performance, including higher strength and lower residual stress. For high-performance applications such as turbines, nuclear plants, or internal combustion engines, even small strength improvements can yield years-to-decades of superior service life.”

Image of CCM 3D printed part fabricated in LEO. Credits: Redwire

The Space Show fund raising drive

Credits: The Space Show

The Space Show – the nation’s first talk radio show focusing on increasing space commerce, advancing space science and economic development, facilitating our move to a space-faring economy which will benefit everyone on Earth – needs your help. The Space Show is hosted by Dr. David Livingston, who completed his doctoral dissertation in 2001 on the commercialization and expansion of space development. Take a moment to visit The Space Show website and read Dr. Livingston’s end of year message. Please give generously to ensure this valuable resource continues to promote, encourage, and support future global economic opportunities, scientific discoveries, and medical advances for all humankind through peaceful and cooperative ventures in outer space.

Book Review: Space is Open for Business by Robert Jacobson

Credits: Robert C. Jacobson

Space is Open for Business by Robert Jacobson is a must-read for all potential “astropreneurs” (entrepreneurs involved the NewSpace economy), space advocates, investors or anyone who wants to keep current on space commerce and its impact on the future of humanity. This book is a refreshingly positive view of our future in space, a welcome alternative outlook in stark contrast to many dystopian and negative predictions of where we’re headed in today’s media.

Jacobson covers all aspects of the nascent space economy which has already begun to grow in leaps and bounds, and is headed for explosive growth in the near future. No stone is left unturned by his deep research of all aspects of space commerce, with scores of interviews of executives from both established and small startup space companies.

I especially liked the Sci-Fi and Society chapter in which Jacobson talks about science fiction “illuminating the possibility of the space frontier”. Much of what is now happening in space was predicted in science fiction in the last century. Many CEOs and executives of NewSpace companies were inspired to pursue careers in science or engineering through science fiction books, televisions shows and movies.

Eventually, humanity will evolve to migrate off Earth and establish space settlements throughout the solar system and eventually among the stars. Development of the technologies and commercial activities for space settlement have the potential to create vast wealth, bring billions of people out of poverty and preserve Earth’s natural environment. Jacobson has provided a hopeful glimpse of how the space businesses supporting this effort will manifest this destiny.

Nanoracks enters AgTech ecosystem through partnership with Abu Dhabi

Artist’s rendering of greenhouses inside a StarLab Outpost. Credits: Nanoracks / Mack Crawford

Nanoracks, a Houston based space logistics company along with Pure Harvest Smart Farms and FreshToHome, have been selected by the Abu Dhabi Investment Office to collaborate on cutting-edge projects to boost the UAE’s agriculture technology (AgTech) infrastructure “across land, sea and space”. Nanoracks is initiating a commercial AgTech space research program in its Abu Dhabi based StarLab Space Farming Center. Starlab will be a commercial space research facility focused on advancing technology for food produced in space and in extreme climates on Earth. The space-based technology will have duel-use applications to not only advance desert agriculture addressing urgent food security challenges, but also be focused on long-term human space exploration and eventual settlement.

Nanoracks plans to leverage it’s “Outposts“, space stations created from salvaged upper stages of spent launch vehicles, to house the company’s greenhouses in low Earth orbit. Next year the company plans to launch a groundbreaking first in-space demonstration mission that will test robotic cutting of a second stage representative tank material. To successfully repurpose upper stages Nanoracks will need to be able to cut metal without producing any orbital debris.

Update 1 September 2021: Nanoracks announces the launch of a new Space AgTech company, StarLab Oasis.

UK to fund study of solar power satellites for wireless power generation from space

Solar Power Satellite delivering wireless power to the UK during daylight hours. (NOTE: power would be delivered 24/7). Credits: Frazer-Nash Consultancy

The United Kingdom’s Department of Business, Energy and Industrial Strategy (BEIS) is commissioning a study by the engineering consultancy Frazer-Nash on the feasibility of space-based solar power for delivery of clean, emission free energy to the country’s electrical power grid 24 hours a day. The study, announced on the Frazer-Nash website, will provide an impartial assessment for the government of the engineering viability, budget and economic benefits of space-based solar power for the UK. Frazer-Nash will partner with Oxford Economics, a global forecasting and quantitative analysis company.

Some key challenges expected from the investigation include: a realistic analysis of the scale of the engineering undertaking to build a satellite of such magnitude in space; can the economics justify the effort to be competitive with other sources of power generation; and finally, what are the international regulatory implications of radio frequency spectrum allocation?

Solar Power Satellite delivering wireless power to the UK at night. (NOTE: power would be delivered 24/7). Credits: Frazer-Nash Consultancy


Shared vision for human and robotic exploration of the Moon and beyond

Credits: ISECG

The International Space Exploration Coordination Group (ISECG) is a forum supported by 14 space agencies to implement the Global Exploration Strategy through coordination of their mutual efforts in space exploration. ISECG has just released their August 2020 Supplement to the Global Exploration Roadmap.

From the Executive Summary: “Evolved lunar surface exploration and ultilisation scenarios reflect plans for a near-term series of robotic missions followed by humans returning to the Moon in this decade. Rather than looking at individual missions, the scenario depicts a stepwise development of an increasingly capable lunar transportation system to the lunar surface, traversing systems on the lunar surface, and infrastructure supporting them that will enable cooperative science and human exploration efforts leading toward a sustained presence on the lunar poles and incorporating lunar surface activities as analogues in preparation for human missions to Mars.”