Governance of space resources

Artist’s illustration of mining activity on the moon (Image: © James Vaughan)

In an essay in the The Space Review, Kamil Muzyka, a PhD Candidate at the Institute of Law Studies of the Polish Academy of Sciences, lays out the space governance framework for profitable and sustainable operations through intergovernmental agreements (IGA). According to Muzyka, any new regulation should address:

  • Safety and security of operations
  • Governance and reciprocal approach to authorization of space activities
  • Dispute resolution
  • A platform for information sharing for commercial, safety, and scientific use
  • A framework for processing, manufacturing, and construction using space objects with the use of obtained resources
  • Liability for damage caused by people and machines
  • The use of synthetic organisms within space objects or on the surface of a celestial body
  • Addressing the issues of extraterritorial intellectual property suits
  • Recommendations for space debris removal, recycling, reuse, and protection of national heritage sites (space objects and their direct vicinity) on the surface, subsurface, atmosphere, or orbit of a celestial body

The Hague International Space Resources Governance Working Group is already working on the Building Blocks of an International Framework on Space Resource activities that will lead to eventual codified space law in this area.

UFO: Investing in the space economy

Procure Space (Ticker symbol UFO) is a little known Exchange Traded Fund (ETF) available to average investors that is the only such vehicle focusing mainly on the space industry. Created by ProcureAM, LLC the ETF trades on the NASDAQ stock exchange. The objective of the fund is to track the S-Network Space Index which is designed to measure the performance of companies engaged in space-related industries. In the future, additional companies engaged in other space-related industries may emerge and be added to the index. These industries could include space colonization and infrastructure, among others.

Procure Space ETF (UFO) portfolio breakdown by industry sector and country. Graphic credit: ProcureAM

Print your own Dynetics Human Landing System model at home

Dynetics, one of three companies awarded a contract by NASA to develop a Human Landing System (HLS) for the Artemis Program, has just come out with a 3D printing file accompanied by a booklet of step-by-step instructions for hobbyists to make their own scale model of the company’s HLS. This is great way to inspire young people to get into STEM fields and hopefully get involved in space exploration and settlement.

Image of Dynetics’ 3D Printing Instructions and completed HLS Model. Image Credits: Dynetics

National Space Society publishes NRL research on opportunities and challenges for Space Solar Power

One of many proposed space solar concepts; depiction is not to scale. Image credit: Naval Research Laboratory

NSS just posted a link to a recent NRL report outlining the next steps needed to make space solar power a reality. We’ve linked to the report on our Space Solar Power page. The report concludes with six recommendations:

(1) Mature space solar’s functional technologies and develop advanced concepts, particularly for power beaming.

(2) Monitor and maintain parity with foreign developments to avoid technological surprise, and to reduce the chances of being faced with a breakout capability.

(3) Advance robotic in-space assembly and manufacturing technology. Investment in these fields could have spin-off dividends in areas as diverse as astronomy, intelligence, and space industrialization.

(4) Address regulatory hurdles, especially in the area of spectrum identification for power beaming.

(5) Track technological progress regularly in areas such as launcher reuse and satellite mass production.

(6) Strengthen relationships between defense and civilian agencies, as well as international partners.

Accessibility of lunar ice

In a recent thread on Twitter referring to a forthcoming paper, Kevin M. Cannon calculates the optimum path for rover access down into the cold traps in lunar craters at the Moon’s poles. The entire dataset including an ice prospecting guide is available on Cannon’s website which is now linked on our In Situ Resource Utilization page

Lowest-energy, lowest-distance and lowest-slope paths from illuminated, flat staging areas outside the cold trap to a target within it. Image and text credits: Kevin Cannon via Twitter

Spinning fiber from lunar regolith

A European student team call Ampex 20 is working on a project called MoonFiber which aims to automate production of glass fibers on the Moon. Applications include fabrication of composites, thermal insulation, fabrics and other products requiring woven material. Products made in-situ from local materials significantly reduce costs by not having to transport them from Earth.

Spinning unit capable to withstand the Moon environmental conditions. Image credit: Ampex 20

The MoonFiber project is being conducted by RWTH Aachen University in Germany. A teaser video is available here.

Private investor reserves spot on Xplore’s first Moon Mission

As stated in a recent press release, noted space business investor and founder of Space for Humanity, Dylan Taylor has booked a payload on Xplore’s upcoming inaugural flight of its flagship Xcraft to the Moon. Although details of the payload have not been revealed, the mission of the nonprofit company is to expand access to space, train our leaders of tomorrow, and contribute to a culture of interconnectedness as we venture into the stars.

Artist concept of an Xplore Xcraft™ in the vicinity of the Moon. Credits: Xplore

Legal implications of a cislunar economy

In an article in Live Encounters Magazine, Dr. Namrata Goswami articulates the legal challenges ahead as the major space powers race to capitalize on the potentially lucrative markets made possible by lunar resources. She argues that now is the time to establish the legal framework for enabling private ownership of resources and profitable businesses. The processes for how conflicts will be resolved over trillions of dollars worth of space resources among legal entities must be defined ahead of time. If international agreements are not developed she believes that there may be a “legal vacuum”, resulting in individual states taking matters into their own hands.

ESA solicits input for European Large Logistic Lander

An artist’s impression of astronauts unloading cargo from ESA’s European Large Logistic Lander. Image courtesy of ESA

In a video message from Jan Wörner, Director General, ESA is asking for ideas on how the agency’s new lander can explore the Moon in the late 2020s. Of particular interest are suggestions for strategies on for the best approaches to science, space resources and technology.

Diagram depicting the timeline and process for idea selection. Image courtesy of ESA

NRL to demonstrate wireless power transmission in space

The Air Force X-37B Orbital Test Vehicle which launched into orbit aboard a ULA Atlas V rocket on May 17 contains the first of its kind experiment to test a system for collection of sunlight and conversion to microwave energy for beaming power where it is needed. Space Settlement Progress reported on the possibility of this mission back in December of last year. Now the hardware, called a Photovoltaic Radio-frequency Antenna Module or PRAM, has been launched. Its been a long time coming but finally some of the key elements of a solar power satellite system will get a shake down cruise in space. I’m old enough to have written a report on space solar power satellites in my high school physics class (1974). Assuming positive results, NRL plans a follow-on experiment to beam power down to Earth.

Image of the Photovoltaic Radio-frequency Antenna Module (PRAM) with a centimeter ruler for scale. Image Courtesy of U.S. Naval Research Laboratory