Mass value: metric for space settlement

Image credit: Richard Bizley, bizelyart.com / National Space Society

In a paper published in New Space last March, Peter Hague describes a figure of merit he developed to drive policy decisions to help accelerate space exploration and space settlement. The aim of the paper was to generate a single metric for every potential space mission on a common scale for comparison purposes. This ‘mass value’ is the amount of mass that would need to be placed in low Earth orbit (LEO) to perform the same mission using a baseline method. That method would use only storable propellants and Hohmann transfer orbits – no gravity assists, aerocapture, high energy propellants or ISRU.

This approach puts a price on all the add-ons which expand the mission beyond the baseline. One can then use a single normalized scale to calculate how much mass to LEO you would save by making propellant on Mars for example, or by taking advantage of a certain launch window to get a gravity assist.

A hands-off government entity could subsidize space expenditures at a flat rate per kg of mass value, confident they are promoting space development without having legislators involved in engineering decisions.

Aggregating all the missions by a nation, company, or other entity could be used to calculate an analogue of GDP for a space civilization. While this does not measure everything we care about – scientific merit, human occupation, etc – neither does GDP. It does capture the overall capability to move around the solar system; and as such, is as useful for charting our journey to becoming a Type II civilization on the Kardashev Scale as it is for analyzing individual missions.

Thanks to Peter Hague for the material in this post. We’ve heard a rumor that there may be a book forthcoming on the subject. Looking forward to it!

Student concept for a crewed lunar rover in support of Artemis

Image depicting EMPRESS. Credits: SEDS-UPRM

When the first woman and next man return to the Moon under the Artemis Program, they will need a mobile scientific platform to assist with exploration of the lunar south pole. Under the Revolutionary Aerospace System Concepts – Academic Linkage (RASC-AL) competition, a team of Students for the Exploration and Development of Space (SEDS) at the University of Puerto Rico, Mayaguez (UPRM) won 1st Place in the contest with their Exploration Multi-Purpose Rover for Expanding Surface Science (EMPRESS). The rover would land at Shackleton crater at the lunar south pole in 2023 taking samples and exploring the region in preparation for the first crewed Artemis mission in 2024.

The rover is envisioned to include two robotic arms and a suite of seven scientific instruments to characterize the lunar surface composition as well as other high priority astrophysical investigations. One the proposed instruments is a neutron spectrometer that could sense the amount of hydrogen in the regolith using data from maps compiled by the Volatiles Investigating Polar Exploration Rover (VIPER) which will survey the lunar south pole for the presence of volatiles and water ahead of the Artemis Missions. This could pave the way for ice mining operations and eventual space settlements in a cislunar water economy.

University of Puerto Rico at Mayagüez winning SEDS team of the 2020 RASC-AL Virtual Forum. Credits: RASC-AL

The current state of the U.S. space industrial base

Credits: USSF-DIU-AFRL

The U.S. Space Force, Air Force Research Laboratory and the Defense Innovation Unit just completed a workshop on the state of the U.S. space industry. The virtual event, hosted by New Space New Mexico, brought together more than 120 representatives across the federal government, industry, and academia to access the current health of the America’s space industry and to provide recommendations for strengthening that industrial base. The resulting report called “State of the Space Industrial Base 2020” has just been released this month.

The workshop focused on 6 key areas thought to be the locus of future space industry activities:

  • Space policy and finance tools
  • Space information services
  • Space transportation and logistics to, in and from cislunar space and beyond.
  • Human presence in space for exploration, space tourism, space manufacturing and resource extraction
  • Power for space systems to enable the full range of emerging space applications
  • Space manufacturing and resource extraction

Recommendations included:

  1. Industry should aggressively pursue partnerships with the US government to develop and operate joint commercial, civil and defense space capabilities. These partnerships should jointly fund developing capabilities that benefit from but are not heavily reliant on US government investment and revenue for their commercial viability.
  2. Entrepreneurs with innovative and potentially dual-use technologies must improve the protection of their intellectual property from unintended foreign assimilation, including protecting their networks from cyber exfiltration attempts, and avoiding exit strategies that transfer intellectual property to foreign control hostile to US interests.
  3. Businesses should engage across the US educational system to guide and develop the future STEM workforce to fuel the future space economy, to include funding for undergraduate scholarships/loans for STEM students, internships and providing space professionals to support instruction in space subjects.
  4. Industry should improve ties and partnerships with domestic and allied parts, subcomponent and subsystem manufacturers to strengthen trust and resilience in space supply chains.

U.S. Department of Energy seeks contractors to design nuclear reactors for the Moon

Credits: Idaho National Laboratory

Battelle Energy Alliance, which manages and operates the U.S. Department of Energy’s (DOE) Idaho National Laboratory, just announced a Request for Information (RFI) on a fission surface power (FSP) source. The Laboratory, in collaboration with the DOE and NASA is seeking innovative technologies and approaches for preliminary designs of a FSP to test and validate operation on the Moon.

According to the RFT: “A reliable, durable energy source is a crucial element to enable the long-duration exploration of space and allow sustainable human presence in the harsh space environment.”

The operational goal is to: “Develop the FSP system with capability of operating autonomously, with the capability of autonomous or commanded on/off cycles. Develop the FSP system to be capable of surviving a single credible failure without reducing electric power capacity by more than 50%. This design objective flows from essential power needs on the Moon or Mars following a component failure. BEA [Battelle Energy Alliance] also encourages respondents to develop the FSP system for a minimum operational life of not less than 10 years at full electric power output.”

The water economy of cislunar space

Illustration of an ice extraction concept for collection of water on the Moon. Credits: George Sowers / Colorado School of Mines

Mining the Moon changes everything. In an article in Air and Space, several prominent scientists we’ve been following discuss how in situ resource utilization (ISRU) can close the business case for companies that will build the infrastructure for a cislunar economy.

George Sowers of Colorado School of Mines and lead researcher on a recent study of ice mining in the solar system believes that water is “the oil of space” which can be used for all sorts of propulsion needs as well as supporting life. He believes that “…the economy of space will run off of water.”

Kevin Cannon, who has developed a treasure map for where the ice deposits are located at lunar poles based on satellite data to support ISRU, believes that we need to follow up with actual prospecting hardware to confirm how much water is actually present.

Joel Sercel, CEO of Trans Astronautica Corporation and recent recipient of a Phase II NIAC grant for a Lunar Polar Mining Outpost, has proposed calling a base located at the Moon’s north pole “New Mesopotamia” likening it to the Fertile Crescent in the Middle East on Earth.

Most of the experts agree that fuel depots on the moon are needed for a sustainable economy in cislunar space before we can push off to Mars and beyond.

Going up? Space elevators getting ready for prime time

Artist’s impression of a space elevator. Credits: Steve Bowers / orionsarm.com

The International Space Elevator Consortium (ISEC) has just published a position paper on the technology readiness of this alternative to launch vehicles subject to the constraints of the rocket equation. Recent advances in material science of single crystal graphene and other alternatives show potential for fabrication of tethers long enough and with the required strength to enable space elevators by the late 2030s. The authors present a case that the demand for launching enough mass to support ESA’s Moon Village, space based solar power and Elon Musk’s vision for Mars colonies far exceeds projected conventional rocket capabilities. Space elevators could fill this need while being better for the environment.

Diagram of a space elevator system. Credits: ISEC

Artemis 8 – Dragon to the Moon

Artist depiction of SpaceX Crew Dragon in Lunar Orbit. Credits: Bruce Irving/Flickr

Robert Zubrin advocates for a quick decision by NASA and the National Space Council on a mission using SpaceX hardware to put a Dragon capsule in orbit around the Moon before the end of the year. In a letter to Jim Bridenstine and Scott Pace, he suggests lofting a crew to low Earth orbit in a Crew Dragon using a Falcon 9 launch vehicle. This would be followed up by launching a Falcon Heavy for rendezvous in LEO with its upper stage containing surplus propellant. The Falcon Heavy upper stage could then propel the Dragon to the Moon in an “Apollo 8” type mission ending with a splashdown of Dragon in the ocean.

Only slight modifications would need to be made to the Dragon to carry enough oxygen for a 6 day journey. The capsule is already designed for Earth capture from a Mars trajectory so return from the Moon should not be a problem. Zubrin’s proposal was sent in a memo to the NASA Administrator and the Executive Secretary of the National Space council on June 30, and reprinted in the Space Review July 6. Such a demonstration could inspire the nation and initiate validation of essential cislunar infrastructure toward settlement of the Moon.

Paragon selected by NASA to develop lunar water collection and purification system

Image Credit: NASA’s Goddard Spaceflight Center

Paragon Space Development Corporation, a subcontractor for Dynetics which is one of the three companies NASA has selected to begin work on designs for human lunar landers, was just awarded a Small Business Innovation Research (SBIR) Phase I grant to develop its ISRU Collector of Ice in a Cold Lunar Environment or ICICLE. The system will use a cold trap for collecting and purifying water from ice mining the permanently shadowed regions of the lunar poles. The purification and collection of lunar water is a critical step in generating in-situ propellant, breathable oxygen, and potable water for space settlements and the cislunar economy.

Space settlement through private enterprise

Artist rendition of Starship exploring Saturn. Image credit SpaceX/Flickr

In an interview by Stuart Clark in BBC Science Focus Magazine, Vice President for North American operations for the International Space University Gary Martin answers questions on how private enterprise is changing space exploration. Companies like SpaceX and Blue Origin, through their own initiatives and public/private partnerships are opening up the final frontier, paving the way for space settlement.

Redwire adds Made in Space to its nascent portfolio

3-stage illustration of a Made in Space Archinaut platform assembling a satellite platform much larger than itself. Image credit: Made in Space

Made in Space, who’s mission is to develop state-of-the-art space manufacturing technology to support exploration, national security, and sustainable space settlement, has been acquired by Redwire, a company just formed earlier this month by AE Industrial Partners (AEI) through the acquisition of Deep Space Systems and Adcole Space. Redwire aims to be a leader in mission critical space solutions and high reliability components for the next generation space architecture. With the acquisition of Made in Space and its Archinaut platform designed to manufacture large structures in space, AEI is well positioned for solving the complex challenges of future space missions needed for space settlement.