The Aerospace Corporation has created a visually stunning chart called “Pathfinders’ Guide to the Space Enterprise” in which they provide a glimpse into the nascent space economy based on hundreds of ideas from over 70 world-class space experts condensed into seven core themes about how the future could unfold. The analysis, which is both deep and thought provoking, identified two critical uncertainties shaping the the future of space development:
1. The degree in which space will be “commercialized.” How much will space exploration and exploitation be designed to seed the commercial ecosystem?
2. The evolution and potential transformation of global power states. What space-based leverage points could change the terrestrial power balance?
Their hope is to “…inspire your internal adventurer to think about how space can and will play a role in the future and how we get there.”
In a paper presented at the AIAA SciTech 2019 Forum, Ariel Ekblaw and Joseph Paradiso of the MIT Media Lab described a concept for a self assembling space station called TESSERAE, which stands for Tessellated Electromagnetic Space Structures for the Exploration of Reconfigurable, Adaptive Environments. The innovative design constructs buckminsterfullerene (“bucky ball”) modules from polyhedral tile sets that utilize a smart sensor network to detect bonds and actuate electromagnets to facilitate autonomous assembly. The resulting structure approximates a spherical shape thereby minimizing surface area (and launch cost) for a given livable space.
In collaboration with MIT Media Lab and as a visiting student, Anastasia Prosina, now the cofounder and CEO of the space architecture company Stellar Amenities, had 3 weeks to design the interior of the habitat to make the most efficient use of livable volume taking into account human factors and minimization of weight for a crew of 8 over a 3 month mission. The results of her work is showcased in the Stellar Amenities portfolio on the firm’s website. Of particular note is how the design borrowed from Japanese architectural concepts such as “Metabolism”, a post-war movement that blended ideas from architectural megastructures with those of organic biological growth. Using Human-Centered Design and a combination of skills in architecture, aerospace and art, the company creates functional yet pleasing environments for space habitats where mass and volume need to be minimized. There is even a meditation corridor for serene self reflection in space.
Update 24 April, 2022: Axiom Space’s Ax-1 mission to the ISS tested prototypes of the TESSERAE tiles in space. From the Axiom Space press release: “The prototypes launching on the Ax-1 mission include an extensive suite of sensing and electro-permanent magnets that monitor diagnostics – provide insight into the quality of bonds between tiles – and drive conformations. This scaled demonstration will build on previous microgravity evaluations of the TESSERAE experiment to explore a new frontier for in-orbit construction of satellites and future space habitats.”
Dr. Ekblaw provides and update on the Ax-1 mission at about 3 minutes into this Axiom Space Video.
The Asteroid Mining Corporation wants to open the resources of the solar system toward a brighter interplanetary future. AMC claims that it does not need to mine an asteroid to be commercially successful, at least initially. The small start up proposes a practical transitional approach based on incremental successes to pay the bills while capitalizing on technological innovations to achieve the ultimate goal of mining an asteroid.
They plan to start with a remote sensing mission called Asteroid Prospecting Satellite (APS-1) to survey Near Earth Asteroids (NEA) to identify which are the most viable candidates for mining. AMC will then sell this data to customers interested in their own mining operations.
The next mission would be an Asteroid Exploration Probe (AEP-1) capable of visiting multiple targets and including a small landing probe to survey the mineralogical, metallurgical and molecular constituents of the most promising high platinum bearing Asteroids identified by APS-1, and test mining equipment.
The ultimate goal of AMC’s effort is the worlds first asteroid mining mission called Asteroid Mining Probe (AMP-1) designed to extract 20 tons of platinum. The AMP-1 spacecraft would be marketed to other customers around the world and would help establish the infrastructure for an extraterrestrial economy.
Artist rendering of EBIOS Experimental BIOregenerative Station. Credits: Interstellar Lab
Interstellar Lab has a mission to help build a future full of life on earth and beyond. To get started, the company plans modular villages on Earth designed as sealed facilities with environmental control and life support systems. EBIOS space-inspired communities will combine architecture, engineering, product design along with international collaboration in environmental science, agriculture, biochemistry, psychology and other disciplines. Each EBIOS will be a hospitality science center open to the public as well as scientists to facilitate awareness and needed research for self-sustaining space settlements. The company is developing methods and simulation software for integrated food production, water and waste systems to support human life in any environment.
In a paper published in New Space last March, Peter Hague describes a figure of merit he developed to drive policy decisions to help accelerate space exploration and space settlement. The aim of the paper was to generate a single metric for every potential space mission on a common scale for comparison purposes. This ‘mass value’ is the amount of mass that would need to be placed in low Earth orbit (LEO) to perform the same mission using a baseline method. That method would use only storable propellants and Hohmann transfer orbits – no gravity assists, aerocapture, high energy propellants or ISRU.
This approach puts a price on all the add-ons which expand the mission beyond the baseline. One can then use a single normalized scale to calculate how much mass to LEO you would save by making propellant on Mars for example, or by taking advantage of a certain launch window to get a gravity assist.
A hands-off government entity could subsidize space expenditures at a flat rate per kg of mass value, confident they are promoting space development without having legislators involved in engineering decisions.
Aggregating all the missions by a nation, company, or other entity could be used to calculate an analogue of GDP for a space civilization. While this does not measure everything we care about – scientific merit, human occupation, etc – neither does GDP. It does capture the overall capability to move around the solar system; and as such, is as useful for charting our journey to becoming a Type II civilization on the Kardashev Scale as it is for analyzing individual missions.
Thanks to Peter Hague for the material in this post. We’ve heard a rumor that there may be a book forthcoming on the subject. Looking forward to it!
In a paper presented at the 65th International Astronautical Congress, Toronto, Canada in 2014 and posted to Acedemia.edu, a team of students* from Italy and Germany discuss an innovative small unpressurised vehicle designed for mobility and maximization of human agility for safe crewed exploration of near earth asteroids (NEA). They named their brainchild NEA Robotic Friend (NRF).
Though conceived when NASA was focused on the Asteroid Redirect Mission (ARM) architecture with the emphasis on developing technology to expand beyond the Moon toward eventual missions to Mars, the NRF could have practical applications in the next phase of space settlement when humans have established a beachhead on the moon and are ready push out into the solar system.
The vehicle was designed to enable safe human proximity EVA operations around a NEA independent of the type of asteroid. Another primary design objective was to investigate, test and validate the use of key technologies for deep space exploration including the ability to collect surface and core samples storing them so that they could be analyzed on Earth. Finally, the platform was envisioned to have the ability to perform in-situ experiments, with real-time data analysis.
* The reference paper was the result of a project within the Alta Scuola Politecnica, joining together students from Politecnico di Torino and Politecnico di Milano. The authors are Luca Levrino, Chiara Gastaldi and Maria Antonietta Viscio from Politecnico di Torino, Italy. Alessandro Ciani, Margherita Censi, Alessandro Cingoli, and Paolo Maggiore from Politecnico di Milano, Italy. Ricardo Repenning from Technische Universität München, Germany
The U.S. Space Force, Air Force Research Laboratory and the Defense Innovation Unit just completed a workshop on the state of the U.S. space industry. The virtual event, hosted by New Space New Mexico, brought together more than 120 representatives across the federal government, industry, and academia to access the current health of the America’s space industry and to provide recommendations for strengthening that industrial base. The resulting report called “State of the Space Industrial Base 2020” has just been released this month.
The workshop focused on 6 key areas thought to be the locus of future space industry activities:
Space policy and finance tools
Space information services
Space transportation and logistics to, in and from cislunar space and beyond.
Human presence in space for exploration, space tourism, space manufacturing and resource extraction
Power for space systems to enable the full range of emerging space applications
Space manufacturing and resource extraction
Recommendations included:
Industry should aggressively pursue partnerships with the US government to develop and operate joint commercial, civil and defense space capabilities. These partnerships should jointly fund developing capabilities that benefit from but are not heavily reliant on US government investment and revenue for their commercial viability.
Entrepreneurs with innovative and potentially dual-use technologies must improve the protection of their intellectual property from unintended foreign assimilation, including protecting their networks from cyber exfiltration attempts, and avoiding exit strategies that transfer intellectual property to foreign control hostile to US interests.
Businesses should engage across the US educational system to guide and develop the future STEM workforce to fuel the future space economy, to include funding for undergraduate scholarships/loans for STEM students, internships and providing space professionals to support instruction in space subjects.
Industry should improve ties and partnerships with domestic and allied parts, subcomponent and subsystem manufacturers to strengthen trust and resilience in space supply chains.
The International Space Elevator Consortium (ISEC) has just published a position paper on the technology readiness of this alternative to launch vehicles subject to the constraints of the rocket equation. Recent advances in material science of single crystal graphene and other alternatives show potential for fabrication of tethers long enough and with the required strength to enable space elevators by the late 2030s. The authors present a case that the demand for launching enough mass to support ESA’s Moon Village, space based solar power and Elon Musk’s vision for Mars colonies far exceeds projected conventional rocket capabilities. Space elevators could fill this need while being better for the environment.
The newly formed nonprofit just issued their June 2020 BE Report outlining what steps need to be taken by government and industry in the areas of export controls, best practices and multilateral agreements to foster a future where millions of people will be living and working in space, while in compliance with the Outer Space Treaty.
In an interview by Stuart Clark in BBC Science Focus Magazine, Vice President for North American operations for the International Space University Gary Martin answers questions on how private enterprise is changing space exploration. Companies like SpaceX and Blue Origin, through their own initiatives and public/private partnerships are opening up the final frontier, paving the way for space settlement.