Evolutionary computational design of closed ecosystems using artificial gravity

Orbiting Modular Artificial-Gravity Spacecraft (OMAGS) concept for testing ecosystems in space – Exterior and cutaway views. Credits: Gregory Dorais / NASA

One of the most important technologies to realize permanent space settlements is the development of self-sustaining controlled ecological life support systems (CELSS). This will require replication of independent self-contained subsets of Earth’s biosphere containing select flora and fauna under controlled conditions for eventual human life support. But are 100% closed ecosystems (with the exception of the exchange of radiation and information) beyond Earth possible? Could a series of controlled evolutionary experiments using machine learning be carried out on controlled ecosystems in space under variable gravity conditions to rapidly optimize the key variables needed to identify the smallest possible CELSS for long term human survival? Gregory Dorais, a research scientist at NASA Ames Research Center, thinks so and describes the strategy in a paper called An Evolutionary Computation System Design Concept for Developing Controlled Closed Ecosystems.

Dorais introduces his concept with a brief description of Closed EcoSystems (CESs) and early efforts by NASA to develop a CELSS for space settlement. Of particular concern are the challenges of putting humans in the equation. There are consequences related to the ratio between human biomass and non-human biomass in ecosystems. On Earth this ratio is low so the ecosystem can self-regulate compensating for imbalances. But in a space biosphere, this ratio in the life support system is comparatively huge leading to significant challenges in maintaining equilibrium. For example, the ISS needs frequent resupply of consumables by spacecraft to replenish losses in the life support system. Wastes that cannot be recycled are either incinerated in the Earth’s atmosphere or exhausted into space. A completely closed system that is self-sustaining has not yet been developed.

Dorais’ design concept for an experimental testbed can be used to explore the viability of different biomass ratios of various combinations of larger animal species and eventually humans. The system consists of a collection of independent CESs controlled and interconnected to generate data for machine learning toward optimizing long term viability. Gradually, the size of the animals in the CES can be increased evolving over time with the ultimate goal of human life support. To kick things off, an Orbiting Modular Artificial-Gravity Spacecraft (OMAGS) is proposed, with room for 24 CESs housed in a 150cm radius centrifuge with appropriate radiation shielding capable of testing the ecosystems under different fractional gravity conditions. The spacecraft is envisioned to be placed in an elliptical orbit in cis-lunar space.

To scale illustration of the OMAGS proposed mission orbit in cislunar space. Credits: Gregory Dorais / NASA

The OMAGS spacecraft has been sized to fit in a SpaceX Falcon Heavy payload fairing.

Illustration of a OMAGS payload sized for a SpaceX Falcon Heavy launch vehicle. Credits: Gregory Dorais / NASA

A NASA patent and tech transfer fact sheet entitled Closed Ecological System Network Data Collection, Analysis, Control, and Optimization System has been issued for this innovation under the NASA Technology Transfer Program.

In a related presentation delivered in November 2018, Dorais says “Once CESs are demonstrated to reliably persist in space, within specified gravity and radiation limits, it is a small step for similar CESs to persist just about anywhere in space (Earth orbit, Moon, Mars, Earth-Mars cycler orbit, asteroids, …) enabling life to permanently extend beyond Earth and grow exponentially.”

ISRU technology gap assessment

Diagram depicting the three main areas of in-situ resource utilization and their connections to surface systems. Credits: ISECG

The International Space Exploration Coordination Group (ISECG), a forum of 14 space agencies which aims to implement a global space exploration strategy through coordination of their mutual efforts, established a Gap Assessment Team (GAT) in 2019 to examine the technology readiness of in-situ resource utilization (ISRU). The purpose of the ISRU GAT effort was to evaluate and identify technology needs and inform the ISECG on gaps that must be closed to realize future missions. The assessment was intended to initiate an international dialogue among experts and drive policy decisions on investment in exploration technologies, while identifying potential areas for stakeholder collaboration. A report has just been released summarizing these efforts.

ISRU systems that can collect and utilize resources available at the site of exploration, instead of transporting them from Earth with considerable expense, cover three broad areas depicted in the diagram above; In-Situ Propellant & Consumable Production, In-Situ Construction, and In-Space Manufacturing with ISRU-Derived Feedstock.

To help understand how each function interacts and influences other areas of ISRU and how they integrate with life support systems, a functional flow diagram shown below was created to help visualize the flow of resources step by step to final product realization.

Integrated ISRU functional flow diagram (Including ties to life support). Credits: ISECG

The GAT reached consensus on key findings and recommendations (listed below) to stakeholders and decision-makers for implementing ISRU capabilities deemed essential for future human space exploration and settlement activities.

Key Findings
* ISRU is a disruptive capability and requires an architecture-level integrated system design approach from the start.
* The most significant impact ISRU has on missions and architectures is the ability to reduce launch mass, thereby reducing the size and/or number of the launch vehicles needed, or use the mass savings to allow other science and exploration hardware to be flown on the same launch vehicle. The next significant impact is the ability to extend the life of assets or reuse assets multiple times.
* The highest impact ISRU products that can be used early in human lunar operations are mission consumables including propellants, fuel cell reactants, life support commodities (such as water, oxygen, and buffer gases) from polar resources (highland regolith and water/volatiles in PSRs).
* While not in the original scope, evaluation of human Mars architecture studies suggest that there is synergy between Moon and Mars ISRU with respect to water and mineral resources of interest, products and usage, and phasing into mission architectures.
* A significant amount of work is underway or planned for ISRU development across all the countries/agencies involved in the study, particularly in the areas of resource assessment, robotics/mobility, and oxygen extraction from regolith.
* While it appears each country/space agency has access to research and component/subsystem size facilities that can accommodate regolith/dust and lunar vacuum/temperatures, there are a limited number of large system-level facilities that exist or are planned.
* The assessment performed on the type and availability of lunar and Mars simulants for development and flight testing shows that 1) while simulants are available for development and testing, greater quantities and higher fidelity simulants will be needed soon, especially for polar/highland-type regolith, and 2) selection and use of proper simulants is critical for minimizing risks in development and flight operations.
* Examination of resource assessment development and activities identified new efforts in refocusing technologies and instrumentation for lunar and Mars operations, and several missions to begin surface and deep assessment of resources are in development, especially to obtain maps of minerals on the lunar surface, surface topography, and terrain features, or to understand the depth profile of water and volatiles.
* While there is significant interest in terrestrial additive manufacturing/construction development, development for space applications has been limited and primarily under Earth-ambient conditions.
* Further research, analysis, and engagement are required to identify synergies between terrestrial mining and in-situ resource utilization (ISRU). Throughout the mining cycle and ISRU architecture, key areas for investigation include; dependence on remote, autonomous, and robotic operations; position, navigation, and timing systems; and energy technologies (e.g., small modular reactors and hydrogen technology).
* Stakeholder engagement is required between the terrestrial mining and space sectors to drive collaboration to identify and benefit from lessons learned from terrestrial innovations for harsh or remote operations.
* Long-term (months/years) radiation exposure limits for crew currently do not exist to properly evaluate radiation shielding requirements. These are needed to properly evaluate Earth-based and ISRU-based shielding options.

Recommendations
* To help advance ISRU development and use in future human exploration, it is recommended that countries/agencies focus on the defined Strategic Knowledge Gaps (SKGs) that have been identified as high priority for each of the 3 human lunar exploration phases described. Early emphasis should be placed on geotechnical properties and resource prospecting for regolith near and inside permanently shadowed regions.
* Since the access and use of in-situ resources is a major objective for human lunar and Mars exploration and the commercialization of space, locating, characterizing, and mapping potential resources are critical to achieving this objective. While work on resource assessment physical, mineral, and water/volatile measurement instruments are underway, and new orbital and lunar surface missions are in development or planned, a focused and coordinated lunar resource assessment effort is needed. It is recommended that Science, ISRU, Human Exploration, and Commercial Space coordinate and work closely on Geodetic Grid and Navigation, Surface Trafficability, and Dust and Blast Ejecta to ensure surface activities and data collection are performed efficiently and safely.
* While short-duration lunar surface crewed missions can be completed with acceptable radiation exposure risk, it is recommended that long-term exposure limits be established and radiation shielding options (Earth and ISRU-based) be analyzed as soon as possible to mitigate risks for sustained operations by the end of the decade.
* Long-term sustained operations will require a continuous flow of missions to the same location. While distance and placing of landers can be initially used to mitigate damage to already delivered equipment and infrastructure, an approach for sustained landing/ascent (in particular for reusable vehicles and hoppers) is needed. Dedicated plume-surface interaction analysis and mitigation technique development are recommended. It is also recommended that development of capabilities and establishment of landing/ascent pads be incorporated into human lunar architectures early to support sustained operations
* Experience from Apollo missions indicates that wear, sealing, and thermal issues associated with lunar regolith/dust may be a significant risk to long-term surface operations. Coordination and collaboration on dust properties/fundamentals, and mitigation techniques and lessons learned are highly recommended. This effort should also involve coordination and collaboration on the development, characterization, and use of
appropriate lunar regolith simulants and thermal-vacuum facility test capabilities and operations for ground development and flight certification.
* To maximize the use of limited financial resources, it is recommended that the ISECG space agencies leverage the information presented in the report, in particular, the content of the “Technology Capture by WBS and Country/Space Agency portfolio” as a starting basis for further discussions on collaborations and partnerships related to resource assessment and ISRU development/operations.
* Collaboration and public-private partnerships with terrestrial industry, especially mining, resource processing, and robotics/autonomy are recommended to reduce the cost/risk of ISRU development and use.
* This includes establishment of an international regulatory framework for resource assessment, extraction, and operations, which are necessary to promote private capital investment and commercial space activities.
* The sustainable development aspects of the ISRU activity are recommended to be taken into account from the start of activity planning for the surface exploration of Moon and Mars.
* Aspects of reusing and recycling hardware are recommended to be taken into account from the design and architecture phase of mission planning. This will contribute to minimizing the exploration footprint (e.g. abandoned hardware) and therefore is key towards sustainability.
* To accelerate the development of key technologies, close knowledge gaps, and expedite testing/readiness, it has been seen that the use of unconventional models, such as government-sponsored prize challenges can be effective innovation catalysts operationalizing the above recommendations, and ultimately, bringing ISRU to the Moon and onwards to Mars.

Artificial gravity space settlement ground-analog

Cross sectional diagram of hypergravity vehicle with tilted cabin on track in max G orientation. Credits: Gregory Dorais / American Institute of Aeronautics and Astronautics

Gregory Dorais, a research scientist at NASA Ames Research Center, has combined several existing technologies including centrifuges, tilted trains and roller coasters to devise a novel hypergravity space settlement ground-analog that could be used to study the effects of artificial gravity on humans, animals and plants for extended periods. He introduced the concept in a paper presented at the American Institute of Aeronautics and Astronautics Space 2016 Conference in Long Beach, California. Experimental results using such a facility could inform designs for orbital rotating habitats providing up to 1G of artificial gravity or even surface-based outposts on the Moon, Mars or anywhere. The facility could also study higher levels of gravity (thus the name “hypergravity”) which could be beneficial in mitigating deleterious effects of microgravity on human physiology.

Dorais’ Extended-Stay HyperGravity Facility (ESHGF) would merge technologies of centrifuges and trains, creating a 150 meter circular track with a series of connected tilting cars. The tracks could use tubular rails similar to today’s rollercoasters or eventually use magnetic levitation. An optional transfer vehicle placed on an outer concentric track is proposed where people and cargo can be moved between a depot and the hypergravity vehicles while they are in motion so that a constant velocity can be maintained without disruptive force changes during operations.

ESHGF system depicted in a complete ring configuration (not to scale). Credits: Gregory Dorais / American Institute of Aeronautics and Astronautics
Hypergravity vehicle single cabin side and perspective views. Credits: Gregory Dorais / American Institute of Aeronautics and Astronautics

The interior of each car could be customized to meet the needs of its inhabitants, but would likely include all the expected functions of a thriving space colony including living quarters, agricultural facilities, marketplaces, recreational centers and much more.

The system is modular and extendable allowing the facility to start small and then expand into a variety of configurations to investigate multiple gravity level environments as sanctioned by budgets. Dorais says that the facility “… will permit research on the long-term health and behavioral effects of various artificial-gravity levels and rotation rates on humans and other life, among other things, to establish the design requirements for long-term space settlements.”

Sustainable space commerce and settlement

Artist impression of a sustainable settlement on the Moon. Credits: ESA – CC BY-SA IGO 3.0

Dylan Taylor of Voyager Space Holdings recently wrote an article in The Space Review on sustainable space manufacturing. He makes a convincing case that long-duration space missions and eventual human expansion throughout the solar system will require radical changes in the way we design, manufacture, repair and maintain space assets to ensure longevity. In addition, the cost of lifting materials out of Earth’s deep gravity well will drive sustainable technologies such as additive manufacturing in space and in situ resource utilization to reduce the mass of materials needed to be launched off our planet to support space infrastructure. In-space recycling and reuse technologies will also be needed along with robotic manufacturing, self-reparability and eventually, self-replicating machines.

But there is more to the philosophy of sustainability and its impact on the future of space activities. According to the Secure World Foundation (SWF), sustainability is essential for “Ensuring that all humanity can continue to use outer space for peaceful purposes and socioeconomic benefit now and in the long term. This will require international cooperation, discussion, and agreements designed to ensure that outer space is safe, secure and peaceful.” Much of the discussion centers around the problem of orbital debris, radio frequency interference, and accidental or irresponsible actions by space actors. SWF is active in facilitating dialog among stakeholders and international cooperation.

The National Science and Technology Council released a report in January called the National Orbital Debris Research and Development Plan. To address the issue, there are several companies about to start operations in LEO to deal with the orbital debris or in-orbit servicing. Japan based Astroscale just launched a demonstration mission of their End-of-Life Services by Astroscale (ELSA) platform to prove the technology of capturing and deorbiting satellites that have reached their end of life or other inert orbital debris.

Image of the Astroscales ELSA-d mission showing the larger servicer spacecraft releasing and preparing to dock with a “client” in a series of technical demonstrations, proving the capability to find and dock with defunct satellites and other debris. Credits Astroscale.

Even financial services and investment houses like Morgan Stanley are pushing for sustainability to reduce the risks to potential benefits emerging from the Newspace economy such as remote sensing to support food security, greenhouse gas monitoring, and renewable energy not to mention internet access for billions of people.

Sustainable operations on the Moon are being studied by several groups as the impact of exploration and development of Earth’s natural satellite is considered. Lunar dust when kicked up by rocket exhaust plumes could create hazards to space actor’s assets as well as Apollo heritage sites. SWF, along with For All Moonkind, the Open Lunar Foundation, the MIT Space Exploration Initiative and Arizona State University have teamed up on a project called the Moon Dialogs to advance interdisciplinary lunar policy directions on the mitigation of the lunar dust problem and to shape governance and coordination mechanisms among stakeholders on the lunar surface. SSP’s take on lunar dust mitigation was covered last July.

These few examples just scratch the surface. NASA, ESA and the UN Office for Outer Space Affairs have initiatives to foster sustainability in space. Humanity will need a collaborative approach where public and private stakeholders work together to ensure that the infrastructure to support near term commercial activities in space and eventual space settlement is both durable and self-sustaining.

The long-term sustainability of space. Credits: ESA / UNOOSA

Solar system rapid transit with the Direct Fusion Drive

Artist rendering of a Direct Fusion Drive nuclear rocket. Credits: Princeton Satellite Systems

A small New Jersey company called Princeton Fusion Systems (PFS) is close to developing a nuclear rocket using an innovative reactor that could also have applications that are down to Earth. Called the Princeton Field Reversed Configuration (PFRC) reactor, the system is based on over 15 years of research at the Princeton Plasma Physics Laboratory (PPPL), with funding primarily by the U.S. DOE and NASA. PFS, a subsidiary of Princeton Satellite Systems, could have a space based system by the end of this decade which could significantly reduces trip times to the outer solar system and increase payload capability while ensuring a robust power source at the designation. The second iteration of the research reactor, PFRC-2, is currently undergoing testing at PPPL.

Second generation Princeton Field Reversed Configuration (PFRC-2) undergoing testing at Princeton Plasma Physics Laboratory. Credits: Princeton Plasma Physics Laboratory

The PFRC reactor is simple, small and produces very little radiation through the fusion of deuterium and helium-3. This makes it uniquely suited for space-based applications. The field-reversed configuration is a magnetic-field geometry in which a toroidal electric current is induced in a cylindrical plasma by radio frequency (RF) heating. The plasma is confined in a “magnetic bottle” composed of a linear array of coaxial magnets. The design is compact (about the size of a minivan) as compared to some of the more complex fusion devices currently under development such as the ITER donut shaped tokamak. A Princeton Satellite Systems video explains how the PFRC reactor is used in a DFD for space applications by exhausting fusion byproducts out one end of the device through a rocket nozzle:

In May of 2019, Stephanie Thomas, a VP at Princeton Satellite Systems made a presentation at the Future In-Space Operations working group on the DFD technology. Of particular note was the slide on the product development roadmap on technology readiness for flight hardware. If all goes according to plan, fusion could be achieved in the fourth generation research reactor PFRC-4 within 5 years and a flight ready payload could be launched before this decade is out.

DFD notional roadmap to flight. Credits: Stephanie Thomas, Princeton Satellite Systems

Travel time for a 1-2 MW fusion engine and 10,000 Kg payload would be 1 year to Jupiter, 2 years to Saturn and 5 years to Pluto, a significant reduction over chemical rockets using gravity assists. Many other missions to the outer solar system and beyond have been scoped by Princeton Satellite Systems using this technology. In his thesis for a Master Degree in Aerospace Marco Gajeri used the DFD architecture to design a trajectory for a mission to Titan. This blog covered a trip to Saturn using the DFD back in 2019. An interstellar mission to Alpha Centuari has also been considered.

The PFRC reactor has a multitude of clean energy applications on Earth as well:

Update March 10, 2023: An engineering analysis of the feasibility of of the Direct Fusion Drive has just been published by Yuvraj Jain and Priyanka Desai Kakade in Acta Astronautica

Planetoid Mines completes development of ISRU Tech

Planetoid Mines Corporation’s ISRU off-world extractor. Credits: Planetoid Mines Corporation

A New Mexico based startup called Planetoid Mines Corporation has just completed development of an autonomous robotic platform for mining the moon or other extraterrestrial worlds via in situ resource utilization. The system features a multi-head icy regolith extractor that feeds directly into an ore beneficiation tool, the output of which is channeled to an onboard oven that extrudes 3D printed structures via a robotic arm.

Through a post on his LinkedIn profile, CEO Kevin DuPriest says “Our self-contained system provides end-to-end continuous mining operations with multiple excavator heads, mineral concentration through beneficiation, a pyrometallurgy oven and thermal printing head. Using lunar surface minerals the system can print landing pads, extrude fused quartz rods, large antenna arrays, etc. ISRU platform designed to fit most lunar landers.”

The company’s website highlights a solid oxide hydrogen fuel cell and steam electrolysis stack that can split lunar water into hydrogen and oxygen for rocket fuel while generating heat and power on-demand. There is even potential dual use benefits of the ISRU architecture for mining on Earth. The website intimates the possibility of a mission to the Moon by 2022, but provides no further details on suppliers of launch or lander services.

In a recent Tweet DuPriest announced the company is considering going public through a Special Purpose Acquisition Corporation (SPAC) and looking for partners to assist with cislunar infrastructure and logistics for mission operations.

A novel ablative arc mining process for ISRU

Illustration of Ablative Arc Mining Process. Credits: Amelia Greig

A NASA NIAC Phase 1 grant has been awarded to Amelia Greig of the University of Texas, El Paso to study an innovative mining technique called ablative arc mining. The process works by using a pair of electrodes to zap surface regolith with an electrical arc thereby ionizing it into its component constituents. The ablated ions are then sorted and collected by subjecting them to an electromagnetic field which separates the material groups by their respective mass. Such a system, when mounted on a mobile rover, could extract both water and metal ions in the same system.

The goal of the this grant is to identify a feasible ablative arc mining scheme for ISRU on upcoming lunar exploration sorties. The study will define the design of an ablative arc and electromagnetic transport system for extraction and collection of water, silicon, and nickel. The architecture should have an output of 10,000 kg/yr of water for use by lunar outposts or other operations. Finally, a trade study will be performed comparing the efficiency of the proposed concept against other ISRU processes such as microwave or direct solar heating which are designed to only collect a single constituent.

We’ll need ISRU methodologies to enable long-term space settlement on the Moon, Mars, in the Asteroid Belt or to support free space habitats. The ablative arc mining architecture may be an efficient alternative for extraction and collection of multiple volatile constituents in a single system when compared to methods that collect only one material at a time.

Seeding asteroids with fungi for space habitat soil

Illustration of a process for making soil for space habitats by seeding asteroids with fungi. Credits: Jane Shevtsov

The asteroid belt will be a treasure trove of raw material for space settlers to use to build their habitats, especially the O’Neill-type rotating cylinder variety. To support plentiful green spaces and robust agricultural systems envisioned for these large scale settlements, an abundant source of fertile soil will be needed. But how could the enormous cost of bringing soil from Earth be avoided? An innovative in situ method under development by Jane Shevtsov of Trans Astronautica Corporation may provide the answer. In a just awarded NASA NIAC Phase 1 grant proposal, she explains that the envisaged soil-making process would be a “…natural fit for asteroid mining operations targeting volatiles, as they use carbonaceous asteroids and leave behind leftover regolith that should make a suitable parent material for soil production.”

The Phase 1 research will be broken down into two tasks. In Task 1 the leading fungal species will be identified for experimentation on asteroid material simulant followed by determination of soil production rates of the fungi along with the effects of environmental factors such as temperature, humidity and oxygen concentration. Task 2 will explore various methods of breaking down asteroid regolith by the chosen fungi in the space environment optimizing for productivity and costs, with the ultimate goal of determining the size of a payload to support a reference mission habitat within a feasible timeframe.

In the above diagram, there are hints that the concept may use an inflatable enclosure around the asteroid to retain volatiles, reminiscent of some of the applications of the SHEPHERD asteroid capture architecture previously covered by SSP, in which a gas atmosphere within the enclosure can keep water in a liquid phase so that the asteroid provides a substrate for introduced biological agents for the generation of foodstuffs and other consumables.

Trans Astronautica has been working on their own asteroid capture method which may come in handy when used in combination with the output of Ms. Shevtsov’s project.

Stability and limitations of environmental control and life support systems for space habitats

Image of Biosphere 2, a research facility to support the development of computer models that simulate the biological, physical and chemical processes to predict ecosystem response to environmental change. Credits: Biosphere 2 / University of Arizona

Once cheap access to space is realized, probably the most important technological challenge for permanent space settlements behind radiation protection and artificial gravity is a robust environmental control and life support system (ECLSS). Such a system needs to be reliably stable over long duration space missions, and eventually will need to demonstrate closure for permanent outposts on the Moon, Mars or in free space. In his thesis for a Master of Science Degree in Space Studies, Curt Holmer defines the stability of the complex web of interactions between biological, physical and chemical processes in an ECLSS and examines the early warning signs of critical transitions between systems so that appropriate mitigations can be taken before catastrophic failure occurs.

Holmer mathematically modeled the stability of an ECLSS as it is linked to the degree of closure and the complexity of the ecosystem and then validated it against actual results as demonstrated by NASA’s Lunar-Mars Life Support Test Project (LMLSTP), the first autonomous ECLSS chamber study designed by NASA to evaluate regenerative life support systems with human crews. The research concluded that current computer simulations are now capable of modeling real world experiments while duplicating actual results, but refinement of the models is key for continuous iteration and innovation of designs of ECLSS toward safe and permanent space habitats.

This research will be critical for establishing space settlements especially with respect to how much consumables are needed as “buffers” in a closed, or semi-closed life support system, when the model’s metrics indicate they are needed to mitigate instabilities. Such instabilities were encountered during the first test runs of Biosphere 2 in the early 1990s.

As SpaceX races to build a colony on Mars, they will need this type of tool to help plan the life support system. Holmer believes that completely closed life support systems for relatively large long term settlements are at least 15 to 20 years away. That means that SpaceX will need to resupply materials and consumables due to losses in their initial outpost who’s life support system in all probability will not be completely closed during the early phases of the project over the next decade. Even SpaceX cannot reduce launch costs low enough to make long term resupply economically viable. They will eventually want to drive toward a fully self sustaining ECLSS. That said, depending on how the company funds its initiatives and sets up it’s supply chains, they may not need a completely closed system for quite some time.

Of course there are sources of many of the consumables on Mars that could support a colony but not all the elements critical for ecosystems, such as nitrogen, are abundant there. There are sources of some consumables outside the Earth’s gravity well which could lower transportation costs and extend the timeline needed for complete closure. SSP covered the SHEPHERD asteroid retrieval concept in which icy planetesimals, some containing nitrogen and other volatiles needed for life support, could be harvested from the asteroid belt and transported to Mars as a supply of consumables for surface operations. TransAstra Corporation is already working on their Asteroid Provided In-situ Supplies family of flight systems that could help build the infrastructure needed for this element of the ecosystem. It may be a race between development of the competing technologies of a self-sustaining ECLSS vs. practical asteroid mining. The bigger question is if humans can thrive long term on the surface of Mars under .38G gravity. In the next century, O’Neill type colonies, perhaps near a rich source of nitrogen such as Ceres, may be the answer to where safe, long term space settlements with robust ECLSS habitats under 1G will be located.

Curt Holmer appeared recently on the The Space Show discussing his research. I called the show and asked if he had used his modeling to analyze the stability of ecosystems sized for an O’Neill-type colony. He said he had only studied habitats up to the size of the International Space Station, but that it was theoretically possible to analyze this larger ecosystem. He said he would like to pursue further studies of this nature in the future.

Ceres megasatellite space settlement

a) Artistic rendering of a megasatellite constellation of habitats with inclined mirrors for collection of sunlight – detail of individual habitats shown in b). Credits: Pekka Janhunen

Pekka Janhunen of the Finnish Meteorological Institute, Helsinki, Finland has just posted a paper on the arXiv server describing his concept for a megasatellite space settlement in orbit around Ceres and constructed from materials from this dwarf planet in the asteroid belt. Ceres is chosen because of the availability of nitrogen and water needed for life support. A space elevator is proposed as an efficient means of lifting materials off the surface.

Janhunen works out the physics and mass budgets for a collection of settlements comprising the megasatellite, each providing 1g artificial gravity and a closed-loop life support system. The assemblage is made up of a collection of self contained rotating habitats which are interconnected and could potentially grow to house billions of people with 2000 square meters of living area per person. Each habitat would include soil thick enough to enable biomes with trees and ideal weather.

SSP covered another free space settlement concept by this author last April a bit closer to home at L5 in the Earth-Moon system. Janhunen discussed this duel-dumbbell design on The Space Show in May of last year.