What will it take to become a spacefaring civilization?

Artist’s concept of an O’Neill space colony. Credit: Rachel Silverman / Blue Origin

J. N. Nielsen has a theory…or four. Picking up where he left off in his previous Bound in the Shallows post on Centauri Dreams about the origins of a spacefaring civilization, Nielsen explores the possibility that the nuclear rocket or fusion power may be the indispensable transformative technology that will enable breakout of a spacefaring future. But even if we develop the capability of nuclear propulsion, it may not be sufficient. We need a “mythology” to enable humanity’s next central project. As Nielson defines it, a mythology “… is a kind of recapitulation in which the contributions of ages past—whether biological, psychological, social, or cultural—are each given their due, and these antecedents serve as a springboard to something authentically novel, something unprecedented that facilitates human beings to transcend their past and to accomplish something unprecedented.”

As happens every time, whenever I dig into Nielson’s rich writings I loose myself in a beautiful philosophical landscape of culture. Give yourself some time to ponder and absorb these insightful hypotheses on what is needed to settle the solar system and beyond…and visit his Grand Strategy: View from Oregon site for more politics, economics, warfare, religion, and philosophy with a focus on civilization which often leads to consideration of the future and space exploration.

2020 NIAC Symposium showcases cutting edge technology for space development

Illustration of SPEAR (Swarm Probe Enabling ATEG Reactor), an affordable nuclear electric propulsion spacecraft using a custom designed fission reactor. Credits: Troy Howe, Howe Industries LLC

The 2020 NASA Innovative Advanced Concepts (NIAC) Symposium just rapped up it’s virtual event. The NAIC Program supports early studies of visionary concepts in space and aeronautics that develop and assess revolutionary, yet credible, aerospace architecture, mission, and system concepts. These studies showcase ideas that will enable far-term capabilities, and spawn exciting innovations to radically improve aerospace exploration, science, and operations.

There were a wealth of new ideas presented at this year’s meeting with Phase I, II, and III posters and presentations available as PDFs on the NAIC Symposium website. To give you a taste, above is an illustration of Howe Industries’ Phase II concept for a small, affordable nuclear electric propulsion spacecraft using a custom designed fission reactor with advanced thermoelectric generators (ATEGs). The innovative design would allow private entities, universities, or other interested parties to carry out missions across the solar system at relatively low cost.

Another favorite of ours was Trans Astronautica’s Mini Bee asteroid capture concept in which they will deploy, then chase down and “swallow” a test object in LEO as a precursor to an asteroid mining mission.

Illustration of Trans Astronautica Corporation’s Mini Bee spacecraft chasing down and capturing an artificial asteroid in LEO. Credits: Joel Sercel / Trans Astronautica Corporation

Some of these NIAC grants have already been covered by SSP such as Phil Metzger’s Aqua Factorem lunar water harvesting process, Masten’s instant lunar landing pad and Trans Astronautica Corporation’s Lunar Polar Propellant Mining Outpost.

We leave you with JPL’s Enceladus Vent Explorer

Illustration of Enceladus Vent Explorer concept. Credits: Masahiro (Hiro) Ono / Jet Propulsion Laboratory

Going up? Space elevators getting ready for prime time

Artist’s impression of a space elevator. Credits: Steve Bowers / orionsarm.com

The International Space Elevator Consortium (ISEC) has just published a position paper on the technology readiness of this alternative to launch vehicles subject to the constraints of the rocket equation. Recent advances in material science of single crystal graphene and other alternatives show potential for fabrication of tethers long enough and with the required strength to enable space elevators by the late 2030s. The authors present a case that the demand for launching enough mass to support ESA’s Moon Village, space based solar power and Elon Musk’s vision for Mars colonies far exceeds projected conventional rocket capabilities. Space elevators could fill this need while being better for the environment.

Diagram of a space elevator system. Credits: ISEC

Human missions to Mercury and Saturn augmented by in situ resource utilization

A nuclear thermal rocket concept. Credits: NASA/Wired

In a paper presented at the 8th Symposium on Space Resource Utilization (2016), Bryan Palaszewski analyzes multiple mission architectures for human voyages to the inner and outer solar system. The planet Mercury has permanently shadowed craters at its poles which likely contain frozen water enabling ice mining for rocket propellant and oxygen for breathable air to sustain settlements. The outer planets and their moons are reservoirs of significant amounts of useful gases such as hydrogen, helium 3, methane, ethane, and ammonia which can be utilized as in-situ resources. Through nuclear propulsion and living off the land with ISRU, travel times can be reduced and payloads increased for both robotic and human missions. With a positive vision for eventual space settlement, Palaszewski concludes the paper with “These technological innovations will enable Krafft Ehricke’s vision of a polyglobal civilization“.

Space nuclear power looking bright

Both fission and fusion nuclear power systems are in development for use in space in the near future. Kilopower, NASA’s fission nuclear reactor we reported on last March has now been renamed the Nuclear Fission Power Project. An update appeared recently in Chemical & Engineering News.

Artist’s concept of NASA’s planned fission power system on the lunar surface. Credits: NASA

On the fusion front, a compact generator is under development by Magneto-Inertial Fusion Technologies, Inc. (MIFTI) a subsidiary of US Nuclear Corporation. In a recent press release the company claims that its staged Z-Pinch reactor may come on line within 5 years, which could potentially be providing power to lunar settlements by the end of this decade. The system may even have enough power to propel hypervelocity space ships shortening trips to Mars.

Schematic of staged Z-Pinch fusion system. Credits: MIFTI

To the stars with a laser induced annihilation drive

A concept for an innovative relativistic interstellar propulsion drive has just been described in the May 23 issue of Acta Astronautica. The propulsion system uses a pulsed laser to generate “antimatter-like” annihilation reactions in hydrogen fuel producing high velocity K meson elementary particles at relativistic speeds. The method is suitable for powering large starships and could be available within a decade. The authors claim the energy released is 100 times greater than fusion. Because hydrogen is readily available throughout the galaxy, fuel for the return trip does not need to be carried on the outbound journey.

Outline of a laser-induced annihilation generator for space propulsion. Credit: Leif Holmlid and Sindre Zeiner-Gundersen, Acta Astronautica 23 May 2020

Beyond EmDrive

Illustration of an EmDrive. Image Credit: Getty Images

As reported in Wired, former Eagleworks leader Dr. Harold “Sonny” White has moved on to join the Limitless Space Institute, an organization fostering research into advanced space power and propulsion technologies that will enable interstellar travel. For more details tune into The Space Show on Tuesday June 16 at 7pm PST when Dr. White will be interviewed by Dr. David Livingston

Interstellar travel using Q-Drive

An analysis of this innovative propulsion system credited to Jeff Greason of the Tau Zero Foundation is provided by Alex Tolley. The method for powering a starship saves fuel by extracting energy from plasma streams in the interstellar medium (or closer to home, from the solar wind) and converting it to momentum using onboard fuel to propel the ship. Although there are engineering challenges, the physics is sound and the savings in fuel enables the system to accelerate payloads to 20% of the speed of light.