Charon: a reusable single-stage to orbit shuttle for Mars

Conceptual illustration depicting the Charon single-stage to Mars orbit mission architecture. Credits: Jérémie Gaffarel et al.* – image from Graphical Abstract with addition of text.

In the next few decades a settlement on Mars will be established, either by Elon Musk or other spacefaring entities (or both). To enable an economically viable supply chain to support a prosperous colony on Mars, an affordable and sustainable transportation system will be needed. Musk is designing Starship for what he originally called an interplanetary transportation system. But his design is just the first step and is expected to evolve over time. As originally conceived Starship may not make long term economic sense for launch from Earth, travel across interplanetary space, landing on Mars, lift off again and finally, return and safe landing on Earth. Even though the Starship User Guide says the the vehicle is designed to carry more than 100 tons to Mars, the enormous amount of cargo and crew required to be transported to support a prospering and sustainable Martian colony if done only with repeated Starship launches directly from Earth will likely be too expensive.

A better approach might be to limit Starship to an in-space transportation system which cycles back and forth between Earth and Mars orbits without a (Mars) landing capability. Not knowing how Starship may evolve, this could be a starting point. Eventually, a more efficient interplanetary transportation system may be an Aldrin cycler. Either scenario would require a shuttle at Mars for delivery of payloads from low orbit to the surface and back to space again. A team* at Delft University of Technology, The Netherlands has come up with a design for a reusable singe-stage to orbit vehicle they call Charon that would reliably address this final leg of the Mars supply chain. They described the mission architecture in an article in the journal Aerospace last year.

The team identified 80 key design requirements for Charon, but three stood out as the most important. At the top of the list was the capability of transporting 6 people and 1200 kg of cargo to and from low Mars orbit. Next, any consumables needed for the vehicle would have the capability of being produced in situ on Mars. Finally, because of the human rating, the reliability of the system would have to be high – with loss of crew less than 0.5% or 1 out of 270, which is equivalent to SpaceX’s Crew Dragon.

With safety being a high priority an abort subsystem is included to address each anticipated flight phase and the associated abort modes. The SpaceX Starship design does not have an abort system, so the authors believe that Charon would be safer for launch from Mars given the high flight rate anticipated to and from Mars low orbit. They suggest that Starship be limited to launch from Earth and interplanetary transportation to Mars orbit.

Cutaway illustration of the layout of the Charon vehicle adapted from Figure 5 in article. Credits: Jérémie Gaffarel et al.*

Cutaway view of the capsule adapted from Figure 4 in article. Credits: Jérémie Gaffarel et al.*

Significant infrastructure will be needed on Mars to support operations, especially in situ resource utilization for production of methane and oxygen for Charon’s propulsion system. This pushes out the timeline for implementation a few decades (to at least 2050) when a Mars base is expected to be well established with appropriate power sources and equipment to handle mining, propellant manufacturing, maintenance, communications and other needed facilities.

Upon a thorough analysis of Charon’s detailed design, reliability and budgets the team concluded that “The program for its development and deployment is technologically and financially feasible.”

* Gaffarel, Jérémie, Afrasiab Kadhum, Mohammad Fazaeli, Dimitrios Apostolidis, Menno Berger, Lukas Ciunaitis, Wieger Helsdingen, Lasse Landergren, Mateusz Lentner, Jonathan Neeser, Luca Trotta, and Marc Naeije. 2021. “From the Martian Surface to Its Low Orbit in a Reusable Single-Stage Vehicle—Charon” Aerospace 8, no. 6: 153. https://doi.org/10.3390/aerospace8060153

Converting orbital trash to treasure with CisLunar Industries’ Micro Space Foundry

Illustration of orbital debris recycling. Instead of deorbiting after a few missions, debris removal spacecraft can refuel themselves with metal propellant using the Micro Space Foundry extending the lifespan and lowering costs. Credits: CisLunar Industries

CisLunar Industries is developing an innovative way to clean up Earth orbit by recycling spent rocket stages and other orbital debris using their Micro Space Foundry (MSF). In a March 2 presentation to the Future In-Space Operations telecon, CisLunar CEO Gary Calnan described the technology and markets for the MSF, development of which was funded by an SBIR/STTR grant from NASA. There is a vast untapped value chain of metals high above our heads. Over the last 60 years as satellites have been launched into space, the used upper stages have been cluttering up low Earth orbit and beyond. But the trash has value because it is useful material in orbit that has already incurred the launch cost.

The system works by robotically cutting aluminum feedstock off of derelict satellites and then processing the metal through the MSF using electromagnetic levitation furnace technologies originally proven on the ISS for virtually contactless metal recycling and reuse in a weightless environment. The MSF spits out rods of “fuel” to feed a Neumann Thruster on the debris removal spacecraft, which can then be powered to deorbit the target satellite and move on to its next destination. Rinse and repeat. The architecture has the potential to change the economics of the cislunar economy by harvesting a valuable in situ resource while cleaning up Earth orbit at the same time.

The Neumann Thruster, invented by Dr. Patrick “Paddy” Neumann, is an electric propulsion system for in-space use which is a highly adjustable, efficient and scalable method for moving satellites where they are needed. The Neumann Drive uses solid metal propellant and electricity to produce thrust via a pulsed cathodic arc system analogous to an arc welder. Neumann, who created the company Neumann Space to commercialize his invention, explains the physics behind the thruster in a video of an early prototype.

CisLunar Industries has other applications planned for the MSF in an emerging in-space ecosystem. In addition to extruding metallic rods as propellant, the system can fabricate long tubes for large-scale space structures or wires for additive manufacturing enabling an in-space commodities value chain and creating demand for processed metals.

Conceptual illustration of the MSF core processing unit, utilizing a modular design to enable lower cost flexible deployment and multiple products in an emerging cislunar economy. Credits: CisLunar Industries

So how mature is the technology? CisLunar has already demonstrated component validation in the lab taking the system to TRL 4. You can see a video documenting the experiment at timestamp 35:54 here. A parabolic flight to run an experiment in simulated weightlessness is scheduled for later this year. Actual in-space end-to-end demonstration with a Neumann Thruster is planned in 2024 via an agreement with Australian space services company Skykraft.

Update on the Photonic Laser Thruster and the interplanetary Photonic Railway

Diagram depicting the layout of the Photonic Laser Thruster (PLT). Credits: Young K. Bae, Ph.D.

SSP reported last year on the promise of an exciting new Photonic Laser Thruster (PLT) that could significantly reduce travel times between the planets and enable a Phonic Railway opening up the solar system to rapid exploration and eventual settlement. The inventor of the PTL, Dr. Young K. Bae has just published a paper in the Journal of Propulsion and Power (behind a paywall) that refines the mathematical underpinnings of the PLT physics and illuminates some exciting new results. Dr. Bae shared an advance copy of the paper with SSP and we exchanged emails in an effort to boil down the conclusions and clarify the roadmap for commercialization.

Illustration of a Photonic Railway using PLT infrastructure for in-space propulsion established at (from right to left, not to scale) Earth, Mars, Jupiter, Pluto and beyond. Credits: Young K. Bae.

In the new paper, Dr. Bae refines his rigorous analysis of the physics behind the PLT confirming previous projections and discovering some exciting new findings.

As outlined in the previous SSP post linked above, the PLT utilizes a “recycled” laser beam that is reflected between mirrors located at the power source and on the target spacecraft. Some critical researchers have argued that upon each reflection of the beam off the moving target mirror, there is a Doppler shift causing the photons in the laser light to quickly lose energy which could prevent the PLT from achieving high spacecraft velocities. The new paper conclusively proves such arguments false and confirming the basic physics of the PLT.

There were two unexpected findings revealed by the paper. First, the maximum spacecraft velocity achievable with the PLT is 2000 km/sec which is greater than 10 times the original estimate. Second, the efficiency of converting the laser energy to the spacecraft kinetic energy was found to approach 50% at velocities greater than 100 km/s. This is surprisingly higher than originally thought and is on a par with conventional thrusters – but the PLT does not require propellent. These results show conclusively that once the system is validated in space, the PLT has the potential to be the next generation propulsion system.

I asked Dr. Bae if anything has fundamentally changed recently in photonic technology that will bring the PLT closer to realization. He said that the interplanetary PLT can tolerate high cavity laser energy loss factors in the range of 0.1-0.01 % that will permit the use of emerging high power laser mirrors with metamaterials, which are much more resistant to laser induced damage and are readily scalable in fabricating very large PLT mirrors.

With respect to conventional thrusters, he said the PLT can be potentially competitive even at low velocities on the order of 10 km/s, especially for small payloads. This is because system does not use propellant which is very expensive in space and because the PLT launch frequency can be orders of magnitude higher than that of conventional thrusters. Dr. Bae is currently investigating this aspect of the system in terms of space economics in depth.

The paper acknowledges that one of the most critical challenges in scaling-up the PLT would be manufacturing the large-scale high-reflectance mirrors with diameters of 10–1000m, which will likely require large-scale in-space manufacturing. Fortunately, these technologies are currently being studied through DARPA’s NOM4D program which SSP covered previously and Dr. Bae agreed that they could be leveraged for the Photonic Railway.

Artist’s concept of projects, including large high-reflectance mirrors, which could benefit from DARPA’s (NOM4D) plan for robust manufacturing in space. Credits: DARPA

I asked Dr. Bae about his timeline and TRL for a space based demo of his Sheppard Satellite with PLT-C and PLT-P propellantless in-space propulsion and orbit changing technology. He responded that such a mission could be launched in five years assuming there were no issues with treaties on space-based high power lasers. There is The Treaty on the Prevention of the Placement of Weapons in Outer Space but I pointed out that the U.S. has not signed on to this treaty. Article IV of the Outer Space Treaty states that “…any objects carrying nuclear weapons or any other kinds of weapons of mass destruction…” can not be placed in orbit around the Earth or in outer space. Dr. Bae said “We can argue that the [Outer Space] treaty regulation does not apply to PLT, because its energy is confined within the optical cavity so that it cannot destroy any objects.  Or we can design the PLT such that its transformation into a laser weapon can be prevented.”

He then went on to say: “For space demonstration of PLT spacecraft manipulation including stationkeeping, I think using the International Space Station platform would be one of the best ways … I roughly estimate it would take $6M total for 3 years for the demonstration using the ISS power and cubesats. The Tipping Point [Announcement for Partnership Proposals] would be a good [funding mechanism] …to do this.”

Once the technology of the Photonic Railway matures and is validated in the solar system Dr. Bae envisions its use applied to interstellar missions to explore exoplanets in the next century as described in a 2012 paper in Physics Procedia.

Conceptual illustration of the Photonic Railway applied to a roundtrip interstellar voyage to explore exoplanets around Epsilon Eridani. This application requires four PLTs: two for acceleration and two for deceleration. Credits: Young K. Bae

Be sure to listen live and call in to ask Dr. Bae your questions about the PLT in person when he returns to The Space Show on March 29th.

Leveraging Starship for lunar habitats

Conceptual overview of the lunar Rosas Base derived from a SpaceX Starship tipped on its side and covered with regolith. Credits: International Space University, Space Studies Program 2021 Team*. The name of the base is in memory of Oscar Federico Rosas Castillo

SSP has examined some of the implications of SpaceX’s Starship achieving orbit, such as an imminent tipping point in U.S. human spaceflight and launch policy. We’ve also discussed how if its successful, Starship will bring about a paradigm shift in the settlement of Mars and how the spacecraft could be used to determine the gravity prescription.

During Elon Musk’s recent Starship update from Boco Chica, Texas he said that he was “highly confident” that Starship would reach orbit this year. He also predicted that the cost of placing 150 tons in LEO could eventually come down to as low as $10 million per launch, and that “…there are a lot of additional customers that will want to use Starship. I don’t want to steel their thunder. They’re going to want to make their own announcements. This will get a lot of use, a lot of attention….”

“Once we make this work, its an utterly profound breakthrough in access to orbit….the use cases will be hard to imagine.” – Elon Musk

One such potential use case was worked out in detail by a team* of students last year during the International Space University’s (ISU) Space Studies Program 2021 held in Strasbourg, France. Called Solutions for Construction of a Lunar Base, the project used the version of Starship currently under development by SpaceX for the Human Landing System component of NASA’s Artemis Program as the basis for a habitat on the Moon. The concept was also described in a paper at the 72nd International Astronautical Congress in Dubai last October. The mission of the project was:

“To develop a roadmap for the construction of a sustainable, habitable, and permanent lunar base. This will address regulatory and policy frameworks, confront technological and anthropological challenges and empower scientific and commercial lunar activities for the common interest of all humankind.”

The team did an impressive job working out solutions to some of the most challenging issues facing humans living in the harsh lunar environment like radiation, micrometeorites, and hazardous lunar dust. They also dealt with human factors, physiological and medical problems anticipated under these conditions. Finally, the legal aspects as well as a rigorous financial analysis was conducted to support a business plan for the base in the context of a sustainable cislunar economy. The report is lengthy and challenging to summarize but here are some of the highlights.

A decommissioned Starship forms the primary core component of the outpost having its fuel tanks converted to living space of considerable volume. This has precedent in the U.S. space program when NASA modified an S-IVB stage of a Saturn V to create Skylab. The team envisions extensive use of a MOdular RObotic Construction Autonomous System (MOROCAS) outfitted with specific tools to perform a variety of activities autonomously which would reduce the need for extravehicular activities (EVA) thereby minimizing risks to crew. The MOROCAS would be utilized to tip the Starship on its side, pile regolith over the station for radiation protection and a range of other useful functions.

Medical emergencies were considered for accidents anticipated for construction activities in the high risk lunar environment. The types of injuries that could be expected were assessed to inform plans for needed medical equipment and facilities for diagnosis and treatment.

As discussed by SSP in a previous post, hazards from lunar regolith must be mitigated in for any activities on the moon. The solutions proposed included limiting dust inhalation through monitoring and smart scheduling EVAs, the use of dust management systems utilizing electrostatic removal mechanisms and intelligent design of equipment. In addition, landing sites and travel routes would be prepared either through sintering of regolith or compaction to prevent damage to structures by rocket plumes.

Funding of the Rosas Base was envisioned to be implemented via a public/private partnership administered by an international authority called the Rosas Lunar Authority (RLA). The RLA management would be structured as an efficient interface between participating governments while being capable of responding to policy and legal challenges. It would rely on public financing initially but eventually shift to private financing supplemented by rental of the base to stakeholders and interested parties.

Finally the team examined the value proposition driving establishment of the base. Sociocultural benefits, scientific advancements and technology transfer would be the primary driving factors. Initial market opportunities would be targeted at the scientific community in the form of data and lunar samples. Follow-on commercial activities that would attract investors could include launch services to orbit, cislunar spacecraft services, propellent markets in lunar orbit and LEO, communications networks in cislunar space and commercial activities on the surface such as supplies of transportation and mining equipment, habitats, and ISRU facilities.

The surface of the Moon provides exciting opportunities for scientific experimentation, medical research, and commerce in the cislunar economy about to unfold in the next decade. The unique capabilities of Starship and the solutions proposed in this report support a sustainable business model for a permanent outpost like the Rosa Base on the Moon.

Conceptual illustration of an emerging cisluar economy. Credits: International Space University, Space Studies Program 2021 Team*

An executive summary of the project is also available.

__________

* ISU Space Studies Program 2021 participants:

Dark ecosystems for food production in space

Artist concept of industrial hubs of circular food production including vertical farming, bioreactors, greenhouses, water treatment and energy production. The same technology has duel use and could be leveraged for life support systems in space settlements. Credits: Mark Goerner / Orbital Farm

Typical plans for space settlements include greenhouses for growing plants as a source of food as well as a key component of ecological closed life support systems to help produce air and recycle water. There are efforts to make these space farms as compact and efficient as possible utilizing hydroponics and LED lighting. But the energy, volume, water and labor requirements can still be a challenge. A new approach is described in a paper in New Space by Michael Nord and Scot Bryson that is based on Earth’s dark ecosystem, the food chain based on bacteria that are chemotrophic, i.e. deriving their energy from chemical reactions rather then photosynthesis. An example of these type of organisms are bacteria that live near volcanic sulfur vents at the bottom of the ocean. They synthesize organic molecules from hydrogen sulfide, carbon dioxide and oxygen which in turn nourish giant tube worms.

Giant tube worms nourished by organic molecules synthesized by chemotrophic bacteria near deep undersea sulfur vents. Credits: Biology Dictionary

“Earth’s dark ecosystem affords us an elegant solution.”

This is not new technology. Fermentation is an example of this biological process which humans have been using for thousands of years in the production of food and drink. NASA explored this option in the 1960s in their plans for sources of food to sustain astronauts on long duration space flights. Synthetization of “single-celled proteins” showed promise for astronaut sustenance but NASA’s priorities shifted after Apollo putting less emphasis on manned spaceflight leading to funding cuts, which put these efforts on hold.

Fast forward to today, there are many companies focusing on using dark ecology as an alternative source of protein both for an ever increasing human population and for animal agriculture. The single-celled proteins are produced by fermentation in bioreactors to produce products mainly used in animal feed but at least one firm, Quorn, is focused on human consumption.

Mycoprotein for human consumption produced by fermentation of the fungus Fusarium venenatum. Credits: Quorn

Others in both government and industry are transitioning Earth’s agricultural approach to a circular economy for food, where food waste is designed out, food by-products are re-used at their highest value, and food production regenerates rather than degrades natural systems. Innovations by companies involved in this type of farming here on Earth have direct applications in bioregenerative life support systems in space. Orbital Farm, who’s CEO Scot Bryson coauthored the paper, is one such company exploring commercialization opportunities in this field.

The authors performed an analysis of energy inputs and material flows for conventional photosynthetic food production when compared to a dark ecosystem and found that the latter is 100 times more efficient in water and energy use, and 1000 times better in terms of volume. But that is not all. There is an added benefit in that “…the very same organisms can be engineered to make pharmaceuticals, plastics, and a variety of other useful complex organic compounds.”

The advantages for space settlement are clear. Although photosynthetic plant growth will play a role in life support systems including the added benefit to humans of the aesthetic value of living among plants, dark ecology can augment food from photosynthetic plants with efficient and sustainable protein production.

“…for bulk production of calories, chemotrophic organisms have enormous efficiencies over production with staple crops, which will be nearly impossible to ignore for mission designers.”

Tube Town – Frontier: Living beneath the surface of the Moon

A lunar sinuous rille (probable collapsed lava tube) Credit: NASA/Lunar Reconnaissance Orbiter (LRO)

SSP featured a post in 2020 on the promise of lava tubes as ideal natural structures on the Moon or Mars in which space settlements could be established. Some are quite voluminous and could contain very large cities. Lava tubes provide excellent protection from radiation, micrometeorite bombardment and temperature extremes while being very ancient and geologically stable.

How would a city be established inside a lava tube? What would it be like to live and work there? Brian P. Dunn paints a scientifically accurate picture of such a future in Tube Town – Frontier, a hard science fiction book visualizing life beneath the surface of the Moon. Dunn recently appeared on The Space Show where he provided tantalizing details on his book scheduled to be published later this year. You can also get a taste of the story through excerpts available on his website.

I’ve had the opportunity to get an advanced copy of his book and will be providing feedback to Dunn prior to publication. He agreed to an interview via email, summarized below, answering some of my initial questions:

SSP: Your first chapter of the book takes place in 2028 and starts out with teleoperated “SciBots” networked together in swarms to explore and prospect for resources at the Moon’s south pole.  They are battery powered and need to periodically recharge at stations at the base of solar power towers at the Peaks of Eternal Light, similar to what Trans Astronautical Corp. is planning with their Sunflower system.  This time frame seems overly optimistic given that NASA’s Artemis program won’t return astronauts to the Moon until the mid 2020s and Jeff Foust reported recently that a second landing won’t take place until 2 years later.  Would it be more realistic to move out the timeline 5-10 years?

BPD: As Kathy Lueders at NASA has said, our strategy with both Moon and Mars is ‘Bots then Boots’. There is much scientific and ISRU work that can be done before the humans arrive. (See the article on my blog “The Mother of All CLPS Missions.”)  With the Moon’s close proximity and communications satellites, we can teleoperate rovers much easier than on Mars. Regarding the SLS/Artemis timeline, I don’t believe it will ever reach full fruition. The Artemis/Gateway architecture is too expensive and too slow. There is a paradigm shift happening now as the concept of large, re-usable, re-fuel able, high payload, quick launch cadence rockets is being proven out with SpaceX’s Starship.

SSP: After discovery of the lava tube in which Tube Town is eventually established, the public “was clamoring for more” and the “excitement of the discovery of the tube breathed new life into lunar and space exploration”.  I know that I would be excited, and most space cadets would be as well, but why would the general public be so supportive of space exploration because of the discovery of a lava tube on the Moon?  A recent poll found that a majority of people think that sending astronauts to the moon or Mars should be either low or not a priority.

BPD: Now that we’re starting to get the rockets, the American public will soon see landers and rovers return to the Moon. This time it will be in HD TV. At some point Americans will return to the Moon. This will be must-see TV. Taikonauts will eventually land on the Moon. This will definitely light a fire under the Americans. Interest in the Moon and lunar exploration will go up. The problem will be sustaining interest (We have an incredibly short attention span). After the world record TV event, interest will wane. We will only be able to put a few astronauts in small habitats on the surface for short periods of time. Upon discovery of an intact lava tube people will know that we could actually build a town on the Moon. Even better than that guy described in that book… what was it called?

SSP: Tube Town is operated by an umbrella organization of national space programs led by NASA called the International Space Program.  How do you envision this cost sharing structure getting started?

BPD: Although much cheaper than a comparable sized surface base, outfitting a lava tube for human habitation will not be cheap. Much of the materials can be made in situ, such as aluminum sheeting for the floors and airlocks, waterless concrete, steel for pressure vessels to hold volatile gasses, but much will need to come from Earth such as Factory machines, computers, electronics, medical equipment, etc.

In Tube Town, this cost is spread among the space programs of 27 countries of the International Space Program (NASA, ESA plus 9 countries that signed the Artemis Accords).

US, Canada, Australia, New Zealand, Japan, South Korea, India, Brazil, Israel, United Arab Emirates, and the 17 member countries of the European Space Agency (Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain Sweden, Switzerland and the United Kingdom). Notable holdouts were China (CNSA) and Russia (Roscosmos).

The ISP is a cost and opportunity sharing umbrella organization for building and maintaining a large Moon base and robotic creation of a Mars base and the first crewed mission to Mars.

NASA would be the lead partner of the ISP, but project decisions were approved and administered by the ISP Board of Directors consisting of the member countries of the organization with weighted voting rights proportionate to their contribution. Many countries wanted to get in on the ground floor of a new space economy but couldn’t afford to duplicate the resources and infrastructure that already existed at NASA. With their combined buying power, the ISP could source rockets, landers, robotics, space suits, etc. from the most efficient and innovative private suppliers. In return, ISP countries received habitation services (shelter, atmosphere, food, water) and discounted rates for:

  • leasing habitation space in the Tube for scientific or commercial enterprise,
  • buying propellant and other in situ resources, and
  • payload return to Earth

ISP construction costs of the Tube are initially off-set by lunar tourism and bespoke mining. Tourism licenses are issued by the ISP to private companies. The contracts include revenue sharing, ISP Code of Conduct compliance and Space Heritage sites preservation requirements. In exchange, the licensees get transportation, medical emergency and habitation services on the Moon.

In Tube Town, the first ISP tourism licensee is with Lunar Experience, LLC. LE licensed 50 seats for a seven Earth day stay. They ran two tours per Earth month to take advantage of the Nearside lunar day (in early days, most of the popular attractions were on the Nearside). LE agreed to give away 25% of the seats to people who could not afford the price. So, of the 50 seats per trip, 12 were free and 38 were paying customers. Assuming a ticket price of $5m for a trip to the Moon for a week, a flight made $190m. The revenue sharing agreement with the ISP was 60/40 (LE 60%, ISP 40%) so for that $190m flight, LE earned $114m and ISP $76m. If only two trips were completed per month, the yearly income would be LE $1.3B and ISP $912m. The ticket price would double to watch the uncrewed launches to Mars and the price would triple to be a part of history to witness the crewed launch to Mars.

In addition, the ISP or commercial customers could take advantage of very reasonable freight rates to backhaul refined payload on the returning tourist rockets to Earth. When would the price become affordable for regular people? Probably after the third tube is discovered. I could see an ISP member like UAE opening a large lava tube exclusively as a vacation resort.

SSP: The main product produced by Tube Town’s factory is spacecraft for Mars exploration and the eventual establishment of an outpost on the Red Planet.  Presumably, at least at first, not all electronic components can be made on the Moon so will have to be imported from Earth via a space-based supply chain.  Elon Musk is designing Starship to go directly to Mars from Earth.  Why does building spacecraft on the Moon for a Mars mission make economic sense when compared to “going direct” like Starship, and why isn’t Starship mentioned in the book? 

BPD: The book is a work of fiction so I try not to use real names or products. Although I think Starship is the first of its class of big, reusable rockets, I also think the concept will be replicated (like airliners) and hopefully there will be several options in the Earth to Moon supply chain. If you can make a big re-usable rocket on a beach in Texas, you can make one inside a nice lava tube on the Moon. We will also need to get lots of bots and machinery to Mars before the humans. This can also be manufactured on the Moon. When you launch, you don’t have to fight the giant gravity well of Earth  (12.6 km/s vs 2.6 km/s) and you may not even have to re-fuel to head for Mars. Huge payloads will be much more economical from the Moon.

Artist conception of a spacecraft manufacturer inside a lava tube. Credit: Riley Dunn

SSP: Tube Town has a Farm devoted to food production, waste re-cycling, and ice processing.  However, without insects or wind pollination it is not possible to grow desirable fruits and vegetables like apples, squash, melons and many more.  You devised an innovative way to pollinate the plants.  Tell us about that!

BPD: Nearly all of the technology described in the book is based on existing technology, whether in the lab or in production. Harvey’s pollinating space bees are based on a combination of miniature drone-delivered soap bubble pollination and AI image recognition software.

SSP: In your book, the Apollo 11 landing site becomes a tourist destination.  What steps are taken to preserve this fragile heritage site?

BPD: I think the Apollo 11 site is the must-see tourist attraction on the Moon. Part of that attraction is that you can still see the boot prints of the astronauts in the regolith. On the moon, boot prints are forever- unless another human destroys them. It only takes one knucklehead.

In my book, a regolith wall is built around the site to protect from plume drift from vehicles. The entrance is a good distance away from the site. Access into the site is in a plexiglass pod that is suspended above the surface. A cable system mounted on tall towers maneuvers pods of tourists through the site from above, giving them a close-up encounter, yet not disturbing the artifacts nor the regolith.

There should be multiple Space Heritage Sites on the Moon consisting of artificial artifacts from multiple countries and natural wonders like Schroter’s Valley. They should be identified and preserved by the tourist licensees that will profit from them.

Vallis Schröteri (Schroter’s Valley), believed to be volcanic in origin, is the largest sinuous rille on the Moon seen here as imaged by Apollo 15. Credits: NASA via Wikipedia

SSP: Tube Town has a centrifuge in the Rec Section to provide artificial gravity for residents to maintain their physical health, but very little detail is provided.  How often do residents use this facility, on average, and is it’s radius optimized to minimize Coriolis forces?  You might consider this well thought out design for a centrifuge.

BPD: I love this design for a lunar lava tube environment! The Rec section of Tube Town is over 400m wide so this is the perfect place for a floor mounted Dorais Gravity Train. In my book, this would be used for scientific study of the effects of artificial gravity treatment in a low gravity environment. They would do studies on both animals, plants and humans. I see crewmembers and tourists using the gravity train as a health spa and treatment against ‘gravity sickness’.

SSP: There are a couple of resident dogs in Tube Town and one them actually becomes pregnant.  This has huge implications for biomedical research on mammalian reproduction in lunar gravity and in particular, determination of the gravity prescription for healthy human gestation.  In my opinion, determination of the gravity prescription is one of the most significant questions to be answered for long term space settlement.  Tell us about how this research is carried out in Tube Town in an ethical manner?

BPD: The studies would start with mice. Only when and if the studies show that mammalian reproduction in low gravity is safe, would the crew move up to higher level mammals. If safe, the female dog would be taken off the canine birth control medication she is on. BTW, all the ISP crewmembers and commercial residents must agree to be on birth control medication while living on the Moon. Many may choose to freeze eggs or sperm on Earth before a long deployment in space.

SSP: Where on the Moon should we look for lava tubes?

BPD: Nearly all of the volcanic activity of the Moon was on the Nearside, not the Farside. So we should definitely concentrate on the Nearside. We can see lots of collapsed lava tubes on the surface of the Moon, the intact ones are probably in the same regions.

Global mosaic map of sinuous rilles identified across the Moon by the LRO Wide Angle Camera. Credits: NASA / D. Hurwitz, J. Head, H. Hiesinger, Planetary and Space Science via Semantics Scholar

My suggestion is to look for them where we would like to find them, in other words, lets look in strategic lunar base locations where there is water and power and easy access to other useful minerals (like metals).

 Multiple sinuous rilles (Aristarchus plateau area) Credit: NASA/LRO

I’m sure NASA knows better than me, but my target priorities would be:

  1. North Pole – because its near water and solar power and metals (the Northern Oceanus Procellarum and the highlands between the maria).
  2. South Pole – because its near water and solar power. The South Pole-Aitken basin is a large impact crater but apparently there was some later volcanic activity so it is possible to find tubes in the South Pole area but they may be smaller in size and length than the ones in the Maria.
  3. Marius Hills (southwest of Schroter’s Valley in Oceanus Procellarum) – because there is lots of volcanic activity and collapsed tubes and it is near minerals and metals.

SSP: Thanks Brian for your exciting vision of our future on the Moon and for the opportunity to get a sneak peek. I’m enjoying the story of Tube Town and wish you much success with the release of the book.

Moon-Mars dumbbell variable gravity research facility in LEO

Conceptual illustration depicting the deployment sequence of a LEO Moon-Mars dumbbell partial gravity facility serviced by SpaceX’s Starship. Left: Starship payloads being moored by a robot arm. Center: 1.6 m ID inflatable airbeams (yellow) play out from spin access and mate with dumbbell end modules. Rectangular solar arrays deploy by hanging at either end as spin is initiated via thrusters at Mars module. Right: Full deployment with Starship and Dragon docked at spin axis hub. Credits: Joe Carroll via The Space Review

There may be no single human factor more important to understand on the road to long term space settlement than determination of the gravity prescription (GRx) for healthy living in less than Earth normal gravity. What do we mean by the GRx? With over 60 years of human space flight experience we still only have two data points for stays longer than a few days to study the effects of gravity on human physiology: microgravity aboard the ISS and data here on the ground. Based on medical research to date, we know that significant problems arise in human health after months of exposure to microgravity. To name a few, osteoporosis, immune system degradation, diminished muscle mass, vision problems due to changes in interocular pressure and cognitive impairment resulting memory loss and lack concentration. Some of these problems can be mitigated with a few hours of daily exercise. But recovery upon return to normal gravity takes considerable time and we don’t know if some of these problems will become irreversible after longer term stays. We have virtually no data on human health at gravity levels of the Moon and Mars, as shown in this graph by Joe Carrol:

Graph of the correlation between human health vs gravity showing the two data points where we have useful data. Whether the relationship is a linear function or something more complex is an unknown of great importance for space settlement. Credits: Joe Carrol presentation at Starship Congress 2019 and Jon Goff post on Selenium Boondocks Nov 29, 2005

The more important question for permanent space settlements is can humans have babies in lower gravity? If we go by the National Space Societies’ definition, an outpost will never really become a permanent space settlement until it is “biologically self-sustaining”. We evolved over millions of years at the bottom Earth’s gravity well. How will amniotic fluid, changes in cell growth, fetal development and human embryos be affected during gestation under lower gravity conditions on the Moon or Mars? There are already indications that problems will arise during mammalian gestation, at least in microgravity as experienced aboard the ISS.

To answer these questions, Joe Carroll suggests the establishment of a crewed artificial gravity research facility in LEO which he described last month in an article in The Space Review. He proposes a Moon-Mars dumbbell with nodes spinning at different rates to simulate gravity on both the Moon and Mars, which covers most of the planetary bodies in the solar system where settlements would be established if not in free space. The facility could be launched and tended by SpaceX’s Starship once the spacecraft is flight worthy in the next few years in parallel with Elon Musk’s plans to establish an outpost on Mars. Musk may even want to fund this facility to inform his long term plans for communities on Mars. If his goal is for the humanity to become a multiplanetary species, surely will want to know if his settlers can have children.

Carroll’s design connects the Moon and Mars modules with radial structures called “airbeams” which will allow crew to access the variable gravity nodes in a shirtsleeve environment. The inflatable members are composed of polymer fiber fabric which can be easily folded for storage in the Starship payload bay. Crews would be initially launched aboard Dragon until the Starship is human rated.

“Eventually, rotating free-space settlements will get massive enough to use other shapes, but dumbbells plus airbeams seem like the key to useful early ones.”

The paper addresses details on key operating concepts, docking procedures, emergency protocols, and the implications for long term settlement in the solar system.

There may even be a market for orbital tourism to experience lower gravity that could make funding for the facility attractive to space venture capitalists, especially if it is located in an equatorial orbit shielded from ionizing radiation by the Earth’s magnetic fields. As the technology matures, older tourists may even want to retire in orbital communities that offer the advantage of lower gravity as their bodies become frail in their golden years.

Humankind’s expansion out into the solar system depends on where we can survive and thrive in a healthy environment. If ethical clinical studies on lower mammals in a Moon/Mars dumbbell clears the way for a healthy life in lunar gravity then we can expand out to the six largest moons including our own plus Mars. If the data shows we need at least Mars gravity, then the Red Planet or even Mercury could be potential sites for permanent settlement. But if nothing below Earth normal gravity is tolerable, especially for mammalian gestation, it may be necessary to build ever larger rotating O’Neillian free space settlements to expand civilization across the solar system. There are vast resources and virtually unlimited energy if we need to do that. But it will take considerable time and careful planning to establish the vast infrastructure needed to build these settlements. If human physiology is constrained by Earth’s gravity then space settlers will want to know this information soon so that the planning process can be integrated into space development activities about to unfold on the Moon and beyond. If Musk finds out that Mars inhabitants cannot have children and wants to establish permanent communities beyond Earth, would he change course and switch to O’Neillian free space settlements?

“If we do need sustained gravity at levels higher than that of Mars, it seems easier to develop sustainable rotating settlements than to terraform any near-1g planet.”

Listen to Joe Carroll answer my questions about his Moon/Mars dumbbell facility from earlier this month on this archived episode of The Space Show.

Robotic production of underground habitats on Mars

An underground habitat on Mars excavated by autonomous rovers reinforced with 3D printed concrete from Martian regolith. Credits Henriette Bier et al.* / Technical University Delft

A team* of researchers at Technical University Delft (TUD) in the Netherlands led by Henriette Bier published a paper last year describing a method for robotically excavating and building structures in cavities below the surface of Mars to provide living spaces for colonists that would be both protected from radiation and thermally insulated from extreme cold. The process would be initiated by autonomous digging rovers hogging out tunnels in a spiral pattern and utilizing the excavated regolith to create concrete for the next step. Using a process developed by TUD called Design-to-Robotic-Production (D2RP) the concrete would be extruded by a 3D printer to reinforce the tunnel walls. Called “Scalable Porosity” TUD has pioneered this process for Earth based architectural applications.

The assumption is that the generated structure is a structurally optimized porous structure, which has increased insulation properties … and requires less material and printing time.

Credits: Technical University Delft

Once structurally sound, the material between the tunnels would be removed to create habitat spaces to be filled by inflatable structures made from materials also sourced in situ.

Although not addressed in detail in the article the authors propose that electrical power be provided by a combination of solar energy and an innovative kite based platform, a highly efficient airborne energy system based on soft wing technology pumped by persistent winds at high altitudes. TUD pioneered this renewable energy technology based on inflatable membrane wings tethered to a ground based generator through its Kite Power research group. A startup called Kitepower B.V. was spun off as a result of this research to commercialize the technology hear on Earth.

Credits: Kitepower B.V.

The D2RP process is data driven and

“…integrates advanced computational design with robotic techniques in order to produce architectural formations by directly linking design to building production.”

For example, the habitat will require a life support system which includes a plant cultivation facility, water recycling and oxygen production controls. These design inputs are coded in the 3D printing program to fabricate the structure around sensor-actuator systems that regulate plant growth and wiring for control mechanisms.

TUD’s goal is to develop a fully self sufficient D2RP system for fabricating subsurface settlements on Mars via ISRU.


* TUD Team members: Henriette Bier, Edwin Vermeer, Arwin Hidding, Krishna Jani

Starship changes the space settlement paradigm

Artist rendering of an earlier version of Starship (formerly BFR, Interplanetary Transport System) approaching Mars. Credits: SpaceX

A mission architecture for Starship is described in a preprint open access article published online December 2 to be released in the next issue of the New Space Journal. The paper lays out a proposed strategy for using the yet to be validated SpaceX reusable spacecraft to establish a self sustaining colony on Mars. The authors* are a mix of space practitioners from NASA, the space industry and academia. No doubt Elon Musk may be thinking along these lines as he lays his company’s plans to assist the human race in becoming a multi-planet species.

Starship is a game changer. It is being designed from the start to deposit massive payloads on The Red Planet. It will be capable of delivering 100 metric tons of equipment and/or crew to the Martian surface, and after refueling from locally sourced resources, returning to Earth. This capability will not only enable extensive operations on Mars, it will open up the inner solar system to affordable and sustainable colonization.

Some of the assumptions posited for the mission architecture are based on Musk’s own vision for his company’s flagship space vehicle as articulated in the New Space Journal back in 2017, namely that two uncrewed Starships would initially be sent to the surface of Mars with equipment to prepare for a sustainable human presence.

“These first uncrewed Starships should remain on the surface of Mars indefinitely and serve as infrastructure for building up the human base.”

The initial landing sites will be selected based on where the water is. The priority will be finding and characterizing ice deposits so that humans will eventually be able to locally source water for life support and to produce fuel for the trip home. The automated payloads of these initial missions will be mobile platforms similar in design to equipment planned for upcoming robotic missions to the Moon in the next couple of years. One such spacecraft, the Volatiles Investigating Polar Exploration Rover (VIPER) is discussed with its suite of instruments that will be used to assess the composition, distribution, and depth of subsurface ice to inform follow-on ISRU operations.

“The use of water ice for ISRU has been determined as a critical feature of sustainability for a long-term human presence on Mars.”

VIPER Searches for Water Ice on the Moon
Conceptual depiction of the NASA VIPER rover planned for delivery to the Moon’s south pole in late 2023. A mobile platform with a similar suite of instruments based on this design could be launched to Mars aboard Starship. Credits: NASA

To harvest water from subsurface ice the authors suggest using proven technology such as a Rodriguez Well (Rodwell). In use since 1995, a Rodwell has been providing drinking water for the U.S. research station in Antarctica. The U.S. Army Engineer Research and Development Center’s (ERDC) Cold Region Research and Engineering Laboratory (CRREL)  has been working with NASA to prove the technology for use in space in advance of a human outpost on Mars.

Diagram depicting how a Rodriquez Well works. Credits: U.S. Army Engineer Research and Development Center

“Rodwell systems are robust and still in routine use in polar regions on Earth.”

The next order of business is power generation. The authors suggest using solar power as a first choice because the technology readiness level is the most mature at this time. Autonomous deployment of a photovoltaic solar array would be carried out on the initial uncrewed missions. But due to frequent dust storms that could diminish the array reliability, nuclear power may be a more appropriate long term solution once space based nuclear power is proven. NASA’s Glenn Research center is working on Fission Surface Power with plans for a lunar Technology Demonstration Mission in the near future. A solid core nuclear reactor is also an option as the technology is well understood.

These initial missions will robotically assess the Martian environment at the landing sites to inform designs of subsequent equipment to be delivered by crewed Starship missions in future launch windows occurring every 26 months. Weather monitoring will be performed as well as measurements of radiation levels and geomorphology to inform designs of habitats and trafficability. Remotely controlled experiments on hydroponics will also be performed to understand how to produce food. Testing will be needed on excavation, drilling, and construction methods to provide data on how infrastructure for a permanent colony will be robustly designed.

Starship’s ample payload capacity will allow prepositioning of supplies of food and water to support human missions before self sustaining ISRU and agriculture can be established. Communication equipment will be deployed and landing sites prepared for the arrival of people. Much of these activities will be tested on the Moon ahead of a Mars mission.

Production of methane and oxygen in situ on Mars will enable refueling of Starship for the trip home, as envisioned in 1990 by Robert Zubrin and David Baker with their Mars Direct mission architecture. Zubrin’s Pioneer Astronautics may even play a role through provision of equipment for ISRU as they are already working on hardware that could be tested on the Moon soon. One could envision a partnership between Zubrin and Musk as their organizations have common visions, and Zubrin has written about the transformative potential of Starship. When people arrive on Starship during a subsequent launch window after the placement of uncrewed vehicles, further testing of ISRU and life support equipment will be performed with humans in the loop to validate these technologies that will enable Mars settlements to sustain themselves.

If Musk is successful in establishing a permanent self-sustaining colony on Mars will it be a true settlement? The National Space Society in their definition says that a space settlement “..includes where families live on a permanent basis, and…with the goal of becoming…biologically self-sustaining…”, i.e. capable of human reproduction. The definition is agnostic as to if the settlement is in space or on a planetary surface. Musk wants to established cities on the planet housing millions of people by mid century. But does this make sense if settlers can’t have healthy children in the lower gravity of Mars? SSP explored this question in a recent post. Hopefully, once Starship becomes operational, an artificial gravity research facility in LEO will be high on Musk’s priority list to answer this question before he gets too far down the Martian urban planning roadmap. Would he ever consider a change in space settlement strategy in favor of O’Neill type free space colonies? Starship could certainly help facilitate the realization of that vision.

If all goes according to plan, SpaceX will attempt the first orbital flight of a Starship prototype sometime next year, which also happens to be when the next launch window opens up for trips to Mars. Obviously, nothing in rocket development goes according to plan, so the initial flight ready design is at least a year away optimistically. And we know Musk’s timelines are notoriously aspirational. As ambitious as Musk is in driving his company toward the goal of colonizing Mars, it seems unlikely that an initial uncrewed mission with all its flight ready automated hardware as described above could be ready by the next launch window in 2024. But what about 2026? NASA’s current plans for return to the Moon call for a human rated version of Starship as a lunar lander “…no earlier then 2025”. However, Japanese billionaire Yusaku Maezawathe’s Dear Moon mission sending 8 crew members around Luna with a crewed Starship is still planned for 2023. A lot of details are yet to be worked out and we still have not covered the topic of Planetary Protection nor the granting of a launch license to SpaceX by the FAA, but could a Starship human mission to Mars take place in 2028? Let me know what you think.

“The SpaceX Starship vehicle fundamentally changes the paradigm for human exploration of space and enables humans to develop into a multi-planet species.”

* Authors of Mission Architecture Using the SpaceX Starship Vehicle to Enable a Sustained Human Presence on Mars Jennifer L. Heldmann, Margarita M. Marinova, Darlene S.S. Lim, David Wilson, Peter Carrato, Keith Kennedy, Ann Esbeck, Tony Anthony Colaprete, Rick C. Elphic, Janine Captain, Kris Zacny, Leo Stolov, Boleslaw Mellerowicz, Joseph Palmowski, Ali M. Bramson, Nathaniel Putzig, Gareth Morgan, Hanna Sizemore, and Josh Coyan

Making the MMOST of ISRU for the Moon and Mars

Conceptual illustration of the Lunar OXygen In-situ Experiment (LOXIE) Production Prototype. Credits: Mark Berggren / Pioneer Astronautics

Here’s a novel way to produce both oxygen and steel in situ on the Moon and eventually on Mars. Under a NASA SBIR Phase II Sequential Contract, Pioneer Astronautics along with team members Honeybee Robotics and the Colorado School of Mines are developing what they call Moon to Mars Oxygen and Steel Technology (MMOST), an integrated system to produce metallic iron/steel and oxygen from processed lunar regolith.

In a presentation at a meeting of the Lunar Surface Innovation Consortium last month, Mark Berggren of Pioneer Astronautics gave an update on the team’s efforts. Progress has been made on several key processes under development as part of the overall manufacturing flow. Output products will include oxygen for either life support or rocket fuel oxidizer and metallic iron for additive manufacturing of lunar steel components.

MMOST process flow diagram. Credits: Mark Berggren / Pioneer Astronautics

The immediate next steps for the MMOST development program will be continual refinement of each process module, protocols for minimization of power requirements, demonstration of LOXIE in a vacuum environment and then optimization of mass, volume and power specifications for a scaled-up system toward flight readiness hardware.

Potential follow-on activities may include a robotic sub-scale LOXIE lunar flight experiment that could be sent to the Moon via a Commercial Lunar Payload Services (CLPS) lander. As part of the Artemis program crews could possibly demonstrate a pilot unit to validate manufacturing in the lunar environment. If successful, a full scale MMOST commercial system could come next in support of lunar base operations as part of a cis-lunar economy.