Conceptual illustration of a Lunar Power Station beaming power to facilities on the Moon for energy intensive in situ resource processing . Credit: Astrostrom GMBH
Settlements on the Moon will eventually need to “live off the land” via in situ resource utilization (ISRU). This approach is essential to make settlements economically feasible and self sustaining, obviating the need to expensively import materials up out of Earth’s gravity well. Before we can utilize resources in situ on the Moon we need to understand how to process them there. Researchers at the University of Waterloo in Toronto, Canada are developing technologies for in situ resource processing (ISRP) of lunar soil to produce useful materials, but they will need power. Lots of it.
In a paper presented last October at the 74th International Astronautical Congress in Baku, Azerbaijan, Waterloo Department of Mechanical and Mechatronics Engineering Master of Science Candidate Connor MacRobbie and Team describe how a space-based solar power (SBSP) satellite in lunar orbit could provide the juice for several energy hungry processes that could generate consumables and building materials from lunar regolith.
The study includes a survey of the scientific literature on lunar regolith processing techniques under development, some with experimental results, that would benefit future lunar settlements. Using electrolysis, chemical reduction, pyrolysis and other reactions these methods can be used to extract metals, oxygen, water and other useful commodities from lunar regolith. The techniques have well established pedigrees on Earth, but will need further development for efficient operations on the Moon and will require very elevated temperatures. Thus, the need for an abundant power source like SBSP.
One such promising process is Molten Regolith Electrolysis (MRE). In this method, lunar soil is heated to the melting point in an electrolytic cell. When voltage is applied across the cathode and anode in the cell, the molten regolith decomposes into metal at the cathode and oxygen at the anode, both of which can be collected and stored for use by settlers. No inputs or materials are needed from Earth, only a local power source to melt the untreated regolith.
One of MacRobbie’s supervisors is Dr. John Wen, director of the Laboratory for Emerging Energy Research (LEER) at Waterloo. With the help of Wen and LEER, the Team developed a novel material processing method for MRE. In molten regolith solutions, the constituents and their oxides can be separated by an applied voltage enabling extraction from the solution. Because each individual oxide decomposes at different values, stepping the voltage will facilitate sequential removal and collection of the lunar soil constituents, e.g. iron, titanium, aluminum, silicon, and others; which can be utilized for building and manufacturing. The new method could reduce the cost of processing and provide purer end products. The Team will continue working with LEER on the design of the equipment toward proof of concept with small batches aiming for accurate and repeatable successive extractions of materials using MRE. The only remaining step would be to qualify flight-ready hardware for experiments on the Moon.
In another project LEER is investigating lunar regolith as an input to a power source in space for heating or manufacturing. The embedded metal oxides in lunar soil, when combined with a metal like aluminum, produce thermal energy via a thermite reaction. The aluminum could be sourced from defunct satellites in Earth orbit which has the added benefit of helping to address the orbital debris problem.
Other groups like Swiss-based Astrostom GMBH with their Greater Earth Lunar Power Station are already working on SBSP solutions to provide ample power for lunar surface settlements which could provide sufficient electricity for Waterloo’s ISRP technology. The Astrostom approach would place the power satellite at the L1 Earth-Moon Lagrange point, a location between the Earth and Moon at a distance of 60,000 km above lunar surface. Although not a gravitationally stable location, the station would could maintain a fixed point above a lunar ground station on the Moon’s nearside with minimal station keeping propulsion systems.
AI generated image of a rotating space station in Earth orbit providing 1g of artificial gravity in the outer ring, with partial gravity in the inner ring and microgravity at the central hub. Credits: Microsoft Designer
SSP has been covering research on artificial gravity (AG) and its impact on space settlement for years. Many of these posts have focused on the Gravity Prescription for human physiology with particular interest in reproduction as humanity will want to ensure that our space settlements are biologically self sustaining (meaning we will want to have children and raise them there). Should we discover that gravity levels on the Moon or Mars are not conducive to couples raising healthy offspring, rotating space settlements with AG may be our only long term option. But there are many other benefits that spin gravity cities can provide for settlers. In a position paper published online last May in Acta Astronautica, gravity researcher Jack J.W.A. van Loon leads a team of European scientists in an exploration of the possibilities and advantages of rotating space stations providing AG. Van Loon founded and manages the Dutch Experiment Support Center (DESC), which provides user support for gravity related research. This study posits a toroidal orbital station large enough and rotating at a sufficient rate to provide 1g of AG in an outer ring, with an intermediate location for partial gravity laboratories and a nonrotating microgravity research facility in a central module.
From an engineering and human factors perspective, pre-flight training would be simplified because practice operations and procedure planning can be performed on the ground in Earth’s normal gravity. Microgravity environments present challenges for physical phenomena like fluid flow, condensation, and heat convection. Provision of a gravity vector eliminates many of these problems simplifying design and use of equipment. This would also reduce development time.
Life support systems utilizing plants to provide breathable air and nutritional sustenance function more naturally and would be less complex in a biosphere with AG. Since plants evolved on Earth to develop gravitropism with roots growing down relative to a gravity vector and shoots sprouting upward, there is no need to develop complex systems to function in microgravity for proper water and nutrient supply as was necessary for NASA’s Passive Nutrient Delivery System aboard the ISS. There would be easier application of hydroponics systems and vertical farming could be leveraged in habitats with AG while harvested fruits and vegetables can be easily rinsed prior to consumption.
With respect to operations, tasks are similar to normal ground based activities so again, less training would be required. Clutter would be reduced and tie downs for tools that tend to float away in microgravity are not necessary. Schedule management would be improved because there would be less time spent on the extra exercise necessary to counteract health problems induced by exposure to microgravity. Activities like showering and sleeping can be challenging in the absence of gravity, so AG would improve the quality of life in regard to these and other routines we take for granted on Earth.
As readers of SSP are aware, the well documented deleterious effects of exposure to microgravity would be mitigated for crews in an AG environment. Such exposure could preserve crew health by preventing losses in bone and muscle mass, cardiovascular deconditioning, weakening of the immune system, vision changes, cognitive degradation and many other spaceflight induced pathologies as documented in the paper’s references. For tourists or visiting researchers, disorientation and days-long adjustment to microgravity due to Space Adaption Syndrome would be prevented.
Safety would be enhanced as well. For instance, combustion processes and flames behave very differently in microgravity making fire suppression less well understood when compared to normal gravity, necessitating development of new safety procedures. Free floating liquids and tools tend to move around unrestricted causing hazards that could potentially short out electrical equipment. Microorganisms and mold could present a health hazard as humidity control is problematic without a gravity vector. Surgery and medical procedures have not been developed for weightless conditions, requiring specially designed equipment and processes. Liquids drawn from vials containing drugs behave differently in microgravity because of surface tension effects. As mentioned above, training for all activities and equipment designed for use in Earth-normal gravity can be performed ahead of time on the ground. Testing of flight hardware would be simplified as it would not need to be redesigned for use in microgravity. Finally, decades of health studies on astronauts in space under microgravity conditions have found that pathological microorganisms are less responsive to antibiotics while at the same time, become more virulent. AG could make these microbes respond as expected on Earth.
The space station proposed in this paper would include an inner ring housing hypogravity facilities where AG equivalent to levels of the Moon and Mars could be provided for investigators to study and tourists to experience. Mammalian reproduction could be studied in ethical clinical experiments to determine if conception, gestation, birth and maturation to adulthood is possible in lower gravity over multiple generations, starting with rodents and progressing to higher primates. The central module would provide a microgravity science center for zero-g basic research or manufacturing where scientists could perform experiments then return to the outer ring’s healthy 1g conditions.
The author’s budgetary analysis found that the cost of such a facility would be about 5% higher than a microgravity habitat due to increased mass for propulsion and supplementary structures, but the benefits outlined above would be an acceptable trade off enabling a better quality of life for tourists and permanent inhabitants. This concept could be the first step in validating health studies and living conditions in artificial gravity informing the design of larger free space settlements.
Conceptual illustration depicting the design features of a Korean Space Solar Power Satellite (K-SSPS) Credits: Joon-Min Choi, Su-Jin Choi, Sang-Hwa Yi via Creative Commons License CC by 4.0
Researchers from the Korea Aerospace Research Institute (KARI) and the Korea Electrotechnology Research Institute (KERI) describe a concept for a Korean Space Solar Power Satellite in a new publication called the Journal of Space Solar Power and Wireless Transmission. Dubbed K-SSPS, its components would be launched with reusable rockets, robotically assembled and tested in LEO, then boosted to geostationary orbit (GEO) using solar electric thrusters powered by its own solar cell array.
The baseline conceptual design for K-SSPS provides 2GW of delivered power to the ground collected by a 4km diameter rectenna located in the Demilitarized Zone. There is sufficient space in this region for 60 rectennas of this size for a total collected power of 120 GW. In terms of electricity generation, such a system would provide a terawatt-hour of electricity per year which exceeds South Korea’s electricity consumption in 2021.
This study also addresses disposal of the system after its useful life estimated to be about three decades, Since such massive systems spanning an area measuring several square kilometers would present a rather large cross section increasing the risk of collision with other decommissioned satellites in the usual graveyard orbit located 235 km above GEO, the authors propose a novel but controversial approach: controlled crash landing the spent satellite in a safe zone on the far side of the Moon. This would enable future colonies on the Moon to harvest these valuable Earth-sourced materials from the impact zone, recycling them into useful commodities to help sustain lunar operations. Care would have to be taken to ensure that the structure is guided to a designated area far from established infrastructure, most of which (if not all) would be located on the near side facing Earth. Not considered in the study was recycling and/or repurposing the K-SSPS materials in space using material processing technology like Cislunar Industries’ Modular Space Foundry (previously Microspace Foundry).
South Korea’s space agency, the Korea Aerospace Research Institute (KARI), has set a goal of a test system deployment in LEO by 2040, with a full scale system in GEO by 2050. Since this effort will take considerable development time and significant financial investment, KARI plans a small-scale two-satellite pilot system demonstration in LEO within the next decade to validate the wireless power transmission technology and the deployment mechanisms. The pilot system, which was described in a paper presented at the 73rd International Astronautical Congress in September 2022, will be placed in a sun synchronous orbit and features a solar panel equipped antenna array beaming power to a receiver satellite 100m away, in a sun synchronous orbit.
Diagram depicting the operational concepts planned over the mission life of the KARI pilot space solar power demonstration. Credits: Joon-Min Choi, Su-Jin Choi, Sang-Hwa Yi via Creative Commons License CC by 4.0
KARI and KIRI have described their case studies on a space solar power program as a renewable energy option for Korea to help address global efforts to achieve net zero greenhouse gas emissions by 2050. This paper summarizes their concept design for a 2GW space solar satellite highlighting gaps in the economic and technological knowledge needed for success, proposed a responsible and sustainable disposal method, and outlined an achievable architecture for a near term pilot demonstration within a decade. Korea joins other global development efforts that SSP has been following with their own unique approach to space-based solar power (SBSP).
However, doubters have been surfacing recently highlighting the significant engineering and economic challenges that need to be addressed for SBSP to be competitive with ground-based renewable energy sources and backup storage systems, the technology of which are rapidly developing and improving. One skeptic, former European Space Agency engineer Henri Barde, published an article in IEEE Spectrum arguing that among other things, designers will have a significant challenge shaping and aiming the microwave beam of a kilometer-scale phased array antennae. In his opinion, this and other engineering obstacles will not be solved until fusion energy will be commercially available. In a rebuttal on LinkedIn, CEO of SBSP startup Virtus Solis John Bucknell responded that his company has proprietary software that can simulate greater than 2km transmission apertures and that SBSP is in the engineering phase while fusion is still in R&D, the complexity of which makes capital and operating costs a big unknown for commercialization.
NASA has yet again kicked the can down the road, claiming in their most recent study that expected greenhouse gas emissions and the cost of space hardware for current design options will be on a par with existing renewable electricity technologies and therefore recommends further study to close several technology gaps for SBSP to make economic sense. The next few years will be critical for engineering testing, not only for Korea’s pilot satellite, but Virtus Solis‘s in-space plans and Northrup Grumman’s end-to-end test in 2025 of their Space Solar Power Incremental Demonstrations and Research prototype system. Once in-space prototype testing demonstrates sufficient feasibility to retire technical risks, venture capital investors may feel comfortable funding subsequent operational phases toward profitable commercialization.
Artist’s depiction of the NASA Volatiles Investigating Polar Exploration Rover (VIPER) locating and assessing the concentration of ice and other resources near the Moon’s South Pole. Credits: NASA / Daniel Rutter
NASA and space settlement advocates are justifiably excited about resources on the Moon, especially water ice known to be present in permanently shadowed regions (PSR) at the lunar poles, because of it’s potential as a source of oxygen and fuel that could be sourced in situ saving the costs of transporting these valuable commodities from Earth. But how much ice is actually available, accessible and can be processed into useable commodities? In other words, in terms defined by the U.S. Geological survey, what are the proven reserves? A reserve is a subset of a resource that can be economically and legally extracted.
By way of background, under NASA’s Moon to Mars (M2M) Architecture where the agency is defining a roadmap for return to the Moon and then on to the Red Planet, an Architecture Definition Document (ADD) with the aim of creating an interoperable global lunar utilization infrastructure was released last year. The goals articulated in the document are to enable the U.S. industry and international partners to maintain continuous robotic and human presence on the lunar surface for a robust lunar economy without NASA as the sole user, while accomplishing science objectives and testing technology that will be needed for operations on Mars.
Of the nine Lunar Infrastructure (LI) goals in the ADD, LI-7 addresses the need to demonstrate in situ resource utilization (ISRU) through delivery of an experiment to the lunar South Pole, the objective of which would be demonstrating industrial scale ISRU capabilities in support of a continuous human lunar presence and a robust lunar economy. LI-8 aims to demonstrate a) the capability to transfer propellant from one spacecraft to another in space; b) the capability to store propellant for extended durations in space and c) the capability to store propellant on the lunar surface for extended durations – defining the objective to validate technologies supporting cislunar orbital/surface depots, construction and manufacturing maximizing the use of in-situ resources, and support systems needed for continuous human/robotic presence.
To accomplish these goals NASA initiated a series of Lunar Surface Science Workshops starting in 2020. The results of workshops 17 and 18 held in 2022 were summarized last January in a paper by Neal et al. in Acta Astronautica and discussed recently at a Future In-Space Operations (FISO) Telecon on 2/14/2024 in a presentation by Lunar Surface Innovation Consortium (LSIC) members Karl Hibbitts, Michael Nord, Jodi Berdis and Michael Miller. These efforts identified a conundrum: there is not enough data to establish how much proven reserves of lunar water ice are available to inform economically viable plans for ISRU on the Moon. Thus, a resource prospecting campaign is needed to address this problem. International cooperation on such an initiative, perhaps in the context of the Artemis Accords, makes sense to share costs while enabling the signatories of the Accords (39 as of this post) to realize economic benefits from commerce in a developing cislunar economy.
The campaign concept proposes a 3-tiered approach. First, confirming ice is present in the PSRs near potential Artemis landing sites – this could be done by low altitude orbital reconnaissance using neutron spectroscopy, radar and other techniques. Next, surface rovers already on the drawing board such as the Volatiles Investigating Polar Exploration Rover (VIPER), would be deployed to locate specific reserves.
Finally, detailed characterization of the reserve using rovers leveraging capabilities learned from VIPER and optimized for reconnaissance in the PSRs. Some technological improvements would be needed in this final phase to address power and long duration roving under the expected extreme conditions. Nuclear power sources and wireless power beaming from solar arrays on the crater rims, both requiring further development, could solve these challenges. This technology will be directly transferrable to equipment needed for excavation, which will face the same power and reliability hurdles in the ultra cold darkness of the PSRs.
As mentioned in the FISO presentation and pointed out by Kevin Cannon in a previous post by SSP, how water ice is distributed in lunar regolith “endmembers” is a big unknown and could be quite varied. Characterization during this last phase is paramount before equipment can be designed and optimized for economic extraction.
Artist’s impression of different types of lunar water ice / regolith endmembers, characterization of which will be required before extraction methods and equipment can be validated. Credits: Lena Jakaite / strike-dip.com / Colorado School of Mines
The authors of the paper acknowledge that coordinating an international effort will be difficult but involving all stakeholders will foster cooperation and shape positive legal policy within the framework of the Artemis Accords to comply with the Outer Space Treaty.
From the conclusion of the paper:
“If the reserve potential is proven, the benefits to society on Earth would be immense, initially realized through job growth in new space industries, but new technologies developed for sending humans offworld and commodities made from lunar resources could have untold important benefits for society back here.”
George Sowers, whose research was referenced in the paper and covered by SSP, believes that “Water truly is the oil of space” that will kickstart a cislunar economy. Once reserves of lunar water ice are proven to exist through a prospecting campaign and infrastructure is placed to enable economically feasible mining and processing for use as rocket fuel and oxygen for life support systems, technology improvements and automation will reduce costs. If it can be made competitive with supply chains from Earth lunar water will be the liquid gold that opens the high frontier.
Artist rendering of a family living in a rotating free-space settlement based on the Kalpana Two design, with a length of 110m and diameter of 125m. Credits: Bryan Versteeg / Spacehabs.com
This post summarizes my upcoming talk for the Living in Space Track at ISDC 2024 taking place in Los Angeles May 23 – 26. The presentation is a distillation of several posts on the Gravity Prescription about which I’ve written over the years.
Lets start with a couple of basic definitions. First, what exactly is a space settlement? The National Space Society defined the term with much detail in an explainer by Dale L. Skran back in 2019. I’ve extracted this excerpt with bolded emphasis added:
Space Settlement is defined as:
“… a habitation in space or on a celestial body where families live on a permanent basis, and that engages in commercial activity which enables the settlement to grow over time, with the goal of becoming economically and biologically self-sustaining …”
The point here is that people will want to have children wherever their families put down roots in space communities. Yes, a “settlement” could be permanent and perhaps inhabited by adults that live out the rest of there lives there, such as in a retirement community. But these are not biologically self-sustaining in the sense that settlers have offspring that are conceived, born and raised there living out healthy lives over multiple generations.
Next we should explain what is meant by the Gravity Prescription (GRx). First coined by Dr. Jim Logan, the term refers to the minimum “dosing” of gravity (level and duration of exposure) to enable healthy conception, gestation, birth and normal, viable development to adulthood as a human being…over multiple generations. It should be noted that the GRx can be broken down into at least three components: the levels needed for pregnancy (conception through birth), early child development, and adulthood. The focus of this discussion is primarily on the GRx for reproduction.
We should also posit some basic assumptions. First, with the exception of the GRx, all challenges expected for establishment of deep space settlements can be solved with engineering solutions (e.g. radiation protection, life support, power generation, etc…). The one factor that cannot be easily changed impacting human physiology after millions of year of evolution on Earth is gravity. We may find it difficult or even impossible to stay “healthy enough” under hypogravity conditions on the Moon or Mars, assuming all other human factors are dealt with in habitat design.
Lets dive into what we know and don’t know about the GRx. Several decades of human spaceflight have produced an abundance of data on the deleterious effects of microgravity on human physiology, not the least of which are serious reduction in bone and muscle mass, ocular changes, and weakening of the immune system – there are many more. So we know microgravity is not good for human health after long stays. Clearly, having babies under these conditions would not be ethical or conducive for long term settlement.
The first studies carried out on mammalian reproduction in microgravity took place in the early 1990s aboard the Space Shuttle in a couple of experiments on STS-66 and STS-70. 10 pregnant rats were launched at midpregnancy (9 days and 11 days, respectively) on each flight and landed close to the (22 day) term. The rat pups were born 2 days after landing and histology of their brain tissue found spaceflight induced abnormalities in brain development in 70% of the offspring.
It was not until 2017 that the first mammalian study of rodents with artificial gravity was performed on the ISS. Although not focused on reproduction, the Japan Aerospace Exploration Agency (JAXA) performed a mouse experiment in their Multiple Artificial-gravity Research System (MARS) centrifuge comparing the impact of microgravity to 1g of spin gravity. The results provided the first experimental evidence that mice exposed to 1g of artificial gravity maintained the same bone density and muscle weight as mice in a ground control group while those in microgravity had significant reductions.
Diagram depicting an overview of the first JAXA Mouse Project in the MARS centrifuge with photos of the experiment on the ISS. Credits: Dai Shiba et al. / Nature. http://creativecommons.org/licenses/by/4.0/
In 2019 JAXA carried out a similar study in the MARS centrifuge adding lunar gravity levels to the mix. This study found that there were some benefits to the mice exposed to 1/6g in that Moon gravity helped mitigate muscle atrophy, but it did not prevent changes in muscle fiber or gene expression.
Just last year, a team led by Dr. Mary Bouxsein at Harvard Medical School conducted another adult mouse study on the MARS centrifuge comparing microgravity, .33g, .67g and 1g. They found that hind quarter muscle strength increased commensurate with the level artificial gravity concluding, not surprisingly, that spaceflight induced atrophy can be mitigated with centrifucation. The results were reported at the American Society for Gravitational and Space Research last November.
Returning to mammalian reproduction in space, an interesting result was reported last year in the journal Cell from an experiment by Japanese scientists at the University of Yamanashi carried out on the ISS in 2019. The team, headed up by Teruhiko Wakayama, devised a way to freeze mouse embryos post conception and launch them into space where they were thawed by astronauts and allowed to develop in microgravity. Control samples were cultured in 1g artificial gravity on the ISS and Earth normal gravity on the ground. The mouse embryos developed into blastocysts and showed evidence of cell differentiation/gene expression in microgravity after 4 days. The researchers claimed that the results indicated that “Mammals can thrive in space”. This conclusion really can’t be substantiated without further research.
Which brings us to several unknowns about reproduction in space. SSP has explored this topic in depth through an interview with Alex Layendecker, Director of the Astrosexological Research Institute. Yet to be studied in depth is (a) conception, including proper transport of a zygote through the fallopian tube to implantation in the uterus. Less gravity may increase the likelihood of ectopic pregnancy which is fatal for the fetus and could endanger the life of the mother; (b) full gestation through all stages of embryo development to birth; and (c) early child development and maturation to adulthood in hypogravity. All these stages of mammalian reproduction need to be validated through ethical clinical studies on rodents progressing to higher primate animal models before humans can know if having children in lower gravity conditions on the Moon or Mars will be healthy and sustainable over multiple generations.
AI generated image of an expectant mother with her developing fetus in Earth orbit after mammalian reproduction has been validated via higher animal models through all stages of pregnancy for a safe level of gravity. An appropriate level of radiation shielding would also be required and is not shown in this illustration. Credit: DALL-E-3
Some space advocates for communities on the Moon or Mars have downplayed the importance of determining the GRx for reproduction with the logic that a fetus in a woman’s uterus on Earth is in neutral buoyancy and thus is essentially weightless. Therefore, why does gravity matter? I discussed this question with Dr. Layendecker and he had the following observations paraphrased here: True, gravity may have less of an impact in the first trimester. But on the cellular level, cytoskeletal development and proper formation/organization of cells may be impacted from conception to birth. Gravity helps orient the baby for delivery in the last trimester and keeps the mother’s uterine muscles strong for contractions/movement of the baby through the birth canal. There are many unknowns on what level of gravity is sufficient for normal development from conception to adulthood.
Why does all this matter? Ethically determining the right level of gravity for healthy reproduction and child development will inform where families can safely settle space. The available surface gravities of bodies where we can establish communities in space cluster near Earth, Mars and Moon levels. These are our only GRx options on solar system bodies.
Gravity level clustering of solar system bodies available for space settlement. Credit: Joe Carroll
The problem is that we don’t yet know whether we can remain healthy enough on bodies with gravity equivalent to that on the Moon or Mars, so we can’t select realistic human destinations or formulate detailed plans until we acquire this knowledge. Of course we can always build rotating settlements in free space with artificial gravity equivalent to that on Earth. Understanding the importance of the GRx and determining its value could change the strategy of space development in terms of both engineering and policy decisions. The longer we delay, the higher the opportunity costs in terms of lost time from failure to act.
What are these opportunity cost lost opportunities? Clearly, at the top of Elon Musk’s list is “Plan B” for humanity, i.e. a second home in case of cataclysmic disaster such as climate change, nuclear war, etc. This drives his sense of urgency. From Gerard K. O’Neill’s vision in The High Frontier, virtually unlimited resources in space could end hunger and poverty, provide high quality living space for rapidly growing populations, achieve population control without war, famine, or dictatorships. And finally, increase freedom and the range of options for all people.
If humans can’t have babies in less than Earth’s gravity then the Moon and Mars may be a bust for long term (biologically sustainable) space settlement. There will be no biologically sustainable cities with millions of people on other worlds unless they can raise families there.
Spin gravity rotating space settlements providing 1g artificial gravity may be the only alternative. If Elon Musk knew that the people he wants to send to Mars can’t have children there, would he change his plans for a self-sustaining colony on that planet? Having and raising children is obviously important to him. As Walter Isaacson wrote in his recent biography of Musk, “He feared that declining birthrates were a threat to the long-term survival of human consciousness.”
So how could he determine the GRx quickly? One solution would be to fund a partial gravity facility in low Earth orbit to run ethical experiments on mammalian reproduction in hypogravity. Joe Carroll has been refining a proposal for such a facility, a dual dumbbell Moon/Mars low gravity laboratory which SSP has covered, that could also be marketed as a tourist destination. Spinning at 1.5 rpm, the station would be constructed from a combination of Starship payload-sized habitats tethered by airbeams allowing shirt sleeve access to different gravity levels. Visitors would be ferried to the facility in Dragon capsules and could experience 3 gravity levels with various tourist attractions. The concept would be faster, cheaper, safer and better than establishing equivalent bases on the Moon or Mars to quickly learn about the GRx. The facility would be tended by crews at both ends that live & collect health data for up to a year or more. And of course, ethical experiments on the GRx for mammalian reproduction would be carried out, first on rodents and then progressing to higher primates if successful.
Left: Conceptual illustration depicting a LEO Moon-Mars dumbbell partial gravity facility constructed from Starship payload-sized habitats tethered by airbeams and serviced by Dragon capsules. Rectangular solar arrays deploy by hanging at either end as spin is initiated via thrusters at Mars module. Center: Image of an inflated airbeam demonstration. Right: diagram of an airbeam stowed for transport and after deployment. Credit: Joe Carroll
What if these experiments determine that having children in lower gravity is not possible and our only path forward are free-space rotating settlements? Physics and human physiology require that they be large enough for settlers to tolerate a 1g spin rate to prevent disorientation. As originally envisioned by O’Neill, the diameter of his Island One space settlement would be about 500 meters.
Conceptual illustration of an Island One space settlement. The living space sphere is sized at about 500m in diameter. Credits: Rick Guidice / NASA
As originally proposed, these settlements would be located outside the Earth’s magnetic field at the L5 Earth-Moon Lagrange Point necessitating that they be shielded with enormous amounts of lunar regolith to protect occupants from radiation. Their construction requires significant technology development and infrastructure (e.g. mass drivers on the Moon, automated assembly in space, advances in robotics, power sources, etc…). Much of this will eventually be done anyway as space development progresses…however, knowing the GRx (if it is equal to 1g) may foster a sense of urgency.
Some may take the alternative viewpoint that if we know that Earth’s gravity works just fine we could proceed directly to free-space settlements if we could overcome the mass problem. This is the approach Al Globus and Tom Marotta took in their book The High Frontier: An Easier Way with Kalpana One, a 450m diameter cylindrical rotating free-space settlement located in equatorial low Earth orbit (ELEO) protected by our planet’s magnetic field, thereby reducing the mass significantly because there would be far less need for heavy radiation shielding.
Artist impression of Kalpana One rotating free-space settlement located in equatorial low Earth orbit. Credits: Bryan Versteeg / Spacehabs.com
Artist rendering of the inside of a rotating free-space settlement based on the Kalpana Two design, with a length of 110m and diameter of 125m. Credits: Bryan Versteeg / Spacehabs.com
Even though these communities would be lower mass, they will still require significant increases in launch rates to place the needed materials in LEO, especially near the equator. Offshore spaceports, like those under development by The Spaceport Company, could play a significant role in this infrastructure. Legislation providing financial incentives to municipalities to build spaceports would be helpful, such as The Secure U.S. Leadership in Space Act of 2024 introduced in Congress last month. The new law (not yet taken up in the Senate) would amend the IRS Code to allow spaceports to issue tax-exempt Muni bonds for infrastructure improvements.
Wouldn’t orbital debris present a hazard for settlements in ELEO? Definitely yes, and the National Space Society is shaping policy in this area. The best approach is to emphasize “light touch” regulatory reform on salvage rights, with protection and indemnity of the space industry to encourage recycling and debris removal. Joe Carroll has suggested a market-based approach that would impose parking fees for high value orbits, which would fund a bounty system for debris removal. This system would incentivize companies like CisLunar Industries, Neumann Space and Benchmark Space Systems, firms that are developing space-based processes to recycle orbital debris into useful commodities such as fuel and structural components.
Further down the road in technology development and deeper into space, advances in artificial intelligence and robotics will enable autonomous conversion of asteroids into rotating space settlements, as described by David Jensen in a paper uploaded to arXiv last year. This approach significantly reduces launch costs by leveraging in situ resource utilization. Initially, small numbers of “seed” tool maker robots are launched to a target asteroid along with supplemental “vitamins” of components like microprocessors that cannot be easily fabricated until technology progresses, to complete the machines. These robotic replicators use asteroid materials to make copies of themselves and other structural materials eventually building out a rotating space settlement. As the technology improves, the machines eventually become fully self-replicating, no longer requiring supplemental shipments from Earth.
Artist impression of a rotating space settlement constructed from asteroid materials. Credits: Bryan Versteeg, spacehabs.com
Leveraging AI to enable robots to build space settlements removes humans from the loop initially, eliminating risk to their health from exposure to radiation and microgravity. Send it the robot home builders – families then safely move in later. There are virtually unlimited supplies in the asteroid belt to provide feedstock to construct thousands of such communities.
Artist impression of the interior of Stanford Torus free-space settlement. Advances in artificial intelligence and robotics will enable autonomous self replicating machines that could build thousands of such communities from asteroid material. Credits: Don Davis / NASA
If rotating space settlements with Earth-normal gravity become the preferred choice for off-Earth communities, where would be the best location, the prime real estate of the solar system? Jim Logan has identified the perfect place with his Essential Seven Settlement Criteria.
Low Delta-V – enabling easy access with a minimum of energy
Lots of RESOURCES … obviously!
Little or No GRAVITY WELL – half way to anywhere in the solar system
At or Near Earth Normal GRAVITY for People, Plants and Animals - like what evolved on Earth
Natural Passive 24/7 RADIATION Protection – for healthy living
Permit Large Redundant Ecosystem(s) – for sustenance and life support
Staging Area for Exploration and Expansion (including frequent, recurrent launch windows)
Using this criteria, Logan identified Deimos, the outermost moon of Mars, as the ideal location. As discussed above, AI and robotic mining technology improvements will enable autonomous boring machines to drill a 15km long core through this body with a diameter around 500 meters – sized for an Island One space settlement to fit perfectly.
Conceptual illustration of a 500 meter wide by 15km long core bored through Deimos. Credit: Jim Logan
In fact, 11 Island One space colonies (minus the mirrors) strung end to end through this tunnel would provide sea level radiation protection and Earth normal artificial gravity for thousands of healthy settlers.
Left: Artist impression of an Island One space settlement. Credits: Rick Guidice / NASA. Right: To scale depiction of 11 Island One space settlements strung end-to-end in a cored out tunnel through Deimos providing sea level radiation protection and Earth normal artificial gravity. Credit: Jim Logan
In conclusion, the GRx for reproduction will inform where biologically self-sustaining healthy communities can be established in space. If we find that the GRx is equal to Earth’s normal level, free-space settlements with artificial gravity will be the safest and healthiness solution for humans to live and thrive throughout the solar system. The sooner we determined the GRx the better, for current plans for settling the Moon or Mars may need to be altered to consider rotating space colonies, which will require significant infrastructure development and regulatory reform. Alternatively, since we know Earth’s gravity works just fine, we may choose to skip determination of the GRx and start small with Kalpana in low Earth orbit. Eventually, artificial intelligence will enable safe, autonomous self-assembly of space settlements from asteroids. The interior of Deimos would be the perfect place to build safe, healthy, biologically self-sustaining space settlements for thousands of families to raise their children, establishing a beachhead from which to explore the rest of the solar system and preserve the light of human consciousness.
Update June 3, 2024: Here is a recording of my presentation on this topic at ISDC 2024.
Cutaway illustration depicting a sublunar farm covered by regolith, providing food and augmenting life support for a settlement on the Moon. Credits: Microsoft Image Creator
The Japan Aerospace Exploration Agency (JAXA) published a report last November summarizing the findings of its Lunar Farming Concept Study Working Group. JAXA’s team, composed of professionals in universities and private experts, assumes that humans will eventually establish permanent communities on the Moon and conducted the study using cutting-edge agriculture science and biotechnology to design a plant factory that would provide nutritional sustenance and oxygen in a life support system for a lunar settlement.
The working group was composed of four subgroups: cultivation, unmanned technology, recycling, and overall system design. The cultivation subgroup focused on the farm’s environmental controls including light levels (provided by LEDs), irrigation and atmospheric conditions tailored to each crop type. The unmanned technology team dealt with robotic maintenance of the plant factory environment including autonomous monitoring, sowing, cultivating and harvesting. The recycling group ensured soil improvement and reuse of limited resources, inedible scraps and waste material. Finally, the overall system subgroup studied the farm as a whole taking into account each plant species.
The scale of the lunar colony in the study was spit into two scenarios. An initial settlement in the near future with a 6 person crew followed by a larger scale permanent community at a later date with 100 people. The objective was to define a scalable cultivation system that would provide energy and nutritional requirements for settlers without resupply from Earth. The design would leverage recycling to fullest extent possible, minimize the use of materials sourced on the Moon such as water and oxygen from the polar regions, and reduce supplies imported from Earth, realizing that the system would not be 100% closed. LED lighting was utilized to optimize wavelength for chlorophyll absorption as well as diurnal growth cycles during the 14 day lunar night, being necessary for crop illumination in an underground farming community protected from radiation by thick layers of regolith. Nuclear power was considered as a power source.
An important finding of the study leveraged a metric called the Equivalent Systems Mass (ESM), to evaluate the life support systems of the different lunar farm designs explored by the team. ESM is a mathematical formula used to perform trade studies to determine which options have the lowest launch cost and is calculated from the system variables mass, volume, power, cooling, and crew working hours. When comparing the ESM of several biomass production systems it was found that the mass of the system could be minimized by appropriate sizing of crop cultivation shelves and increased space utilization efficiency. It was shown that over a 10 year period an optimized design for a lunar farm would not have to be replenished with food from the Earth when building materials, water and oxygen were supplemented by sources on the Moon and nuclear power was assumed as a power source.
The JAXA study adds to the space farming body of knowledge needed for establishing life support systems for space settlement.
A fictional depiction of an ore ship servicing mining operations on an asteroid. Credits: DALL∙E 3
The clean energy transition away from fossil fuels promoted by the Biden Administration and other world governments will require significant increases in mining of critical materials for clean energy technology. To support the huge projected growth in solar, wind, and battery technologies over the next few decades, demand for key minerals such as lithium, graphite, nickel and rare-earth metals will balloon significantly according a 2021 report by the International Energy Agency: The Role of Critical Minerals in Clean Energy Transitions. When compared to current supply levels, sourcing of these materials will need to grow by several hundred percent, with lithium in particular predicted to explode by 4,200% to keep pace with the needed battery production for EVs and other energy storage systems. There is insufficient mining capability in the world today to meet this demand, and if capacity were ramped up to these levels, there would be serious environmental and economic consequences. If we ignore other promising alternatives (which SSP does not advocate) such as ramping up licensing of new nuclear fission power plants and funding development of fusion energy or space solar power, what can be done?
In the journal PNAS, a research article makes the case for why mining in space may be a viable solution and help lay the foundation for sustainable growth on Earth. The author’s* objective for the paper was to perform a trade study on the economic outcomes associated with the environmental and social impacts of terrestrial mining compared to the costs of sourcing from asteroids, focusing primarily on metals required for the clean energy technologies such as copper, nickel cobalt and lithium. The methodology of the paper used a neoclassical Ramsey economic model to predict economic growth under those two scenarios. The study quantifies the economic benefits and projected timelines of mining in space for increasing metal use in clean technologies on Earth for the rest of this century and concludes that the reduction in costs due to environmental damage to our planet’s biosphere may be worth the investment in asteroid mining.
Along similar lines another economic analysis by Matthew Weinzierl makes the potential case for an expanding space economy as a solution to secular stagnation, that condition that some economists fear is happening in the US: a chronic lack of demand as if the economy is operating below capacity even when it appears to be booming. Weinzierl says “In simple terms, secular stagnation is the idea that a sluggish outlook for the economy causes people to save more and firms to invest less, and if interest rates cannot fall enough to spur investment (perhaps because of the sluggish outlook), the lack of investment makes the low-growth prospects all the more likely to be fulfilled, initiating a vicious cycle.” How could space development help prevent this problem? Space settlement, i.e. world building, would unlock abundant resources in the solar system to sustain not only capital investment in expanding economic activity, but robust population growth without limits.
An interesting perspective on off-Earth mining as a commercial engine driving a space economy, with a focus on a thriving Martian colony, was proposed a few years ago in a paper by Robert Shishko and others. The study examined the role of space mining in an economy based on mineral extraction, ice/water, and other resources obtained in situ on the Red Planet. The analysis provided a better understanding of the market conditions and technology requirements for that economy to grow and prosper. This approach would definitely benefit from the recent discovery of massive amounts of subsurface water ice under the Medusae Fossae Formation near the equator of Mars.
Mars Express radar image of subsurface water ice beneath the Medusae Fossae Formation near the equator of Mars. Credits: ESA
If an economic case can be made for space mining and funding secured, it will be dependent on the location of the most profitable and accessible space resources in terms of energy and abundance of useful material. Where will this motherlode for space mining be? SSP has covered this debate.
One of the companies on this frontier is UK based Asteroid Mining Corporation which has the goal of becoming the first profitable space resources business. The startup is working on an autonomous robotic platform call Space Capable Asteroid Robot Explorer with a roadmap that plans for revenue payout at each milestone with eventual return of asteroid resources in the mid-2030s.
Asteroid Mining Corporation’s Space Capable Asteroid Robotic Explorer. Credits: Asteroid Mining Corporation.
And of course readers of SSP are familiar with AstroForge, the company focusing on returning precious metals to Earth from asteroids.
Artist impression of a rotating space settlement under construction using material from an asteroid.Credits: Bryan Versteeg, spacehabs.com
__________________
* Authors of research article in PMAS Mining in Space Could Spur Sustainable Growth: Maxwell Fleming, Ian Lange, and Sayeh Shojaeinia of the Colorado School of Mines; Martin Stuermer of the International Monetary Fund.
Company images of a Neumann Drive at upper left with it’s plasma discharge produced in the lab at upper right overlayed above the Earth from space. Credits: Neumann Space / NASA
Neumann Space has announced completion of initial on-orbit tests of its innovative electric propulsion system, the first of its kind utilizing solid metal as propellent to fuel a cathodic arc discharge to generate thrust via plasma exhaust. The commissioning campaign for the system confirmed that the electronics worked properly and that the thruster fired. Next up: following last December’s launch of the company’s second experiment in space, an engineering demonstration later this year will test that the propulsion system can change the orbit of a satellite.
Neumann Space has already lined up both a customer and a potential space-based source of fuel through a partnership with CisLunar Industries. In this symbiotic relationship, CisLunar will utilize Neumann’s thruster to propel their servicing vehicle that hunts down chunks of metallic space debris which will be captured and delivered to a salvage platform to be recycled into metal propellent via CisLunar’s Modular Space Foundry (previously called Micro Space Foundry). The servicing vehicle can then refuel itself to proceed to its next target. SSP reported previously on this propulsion ecosystem which could literally turn trash into treasure while cleaning up orbital debris.
Conceptional illustration of propulsion ecosystem based on CisLunar Industries Modular Space Foundry process for recycling orbital debris. Credits: CisLunar Industries
The orbital debris issue not only poses a serious threat to human spaceflight in Earth orbit, unless policies and standard practices are implemented to mitigate the issue, remote sensing, climate monitoring, weather forecasting and all commercial activities in space could be at risk, not to mention long term sustainable space settlement. The on-orbit recycling partnership between Neumann Space and CisLunar Industries will help implement the remediation pillar of the National Orbital Debris Mitigation Plan promulgated in 2022 by the White House Office of Science and Technology Policy.
In other news, CisLunar Industries was one of fourteen other companies selected by DARPA for its LunA-10 program, a lunar architecture study that will define commercial activities in an integrated infrastructure for lunar development over the next 10 years. CisLunar will collaborate with industry partners to develop what they call METAL, a framework for Material Extraction, Treatment, Assembly & Logistics in a lunar economy based on in situ resource utilization.
Conceptual illustration showing the first iteration of the proposed design of a GE⊕ Lunar Power Station beaming power to facilities on the Moon. Credit: Astrostrom
In response to ESA’s Open Space Innovation Platform Campaign on Clean Energy – New Ideas for Solar Power from Space, the Swiss company Astrostrom laid out a comprehensive plan last June for a solar power satellite built using resources from the Moon. Called the Greater Earth Lunar Power Station (GE⊕-LPS, using the Greek astronomical symbol for Earth, ⊕ ), the ambitious initiative would construct a solar power satellite located at the Earth-Moon L1 Lagrange point to beam power via microwaves to a lunar base. Greater Earth and the GE⊕ designation are terms coined by the leader of the study, Arthur Woods, and are “…based on Earth’s true cosmic dimensions as defined by the laws of physics and celestial mechanics.” From his website of the same name, Woods provides this description of the GE⊕ region: “Earth’s gravitational influence extends 1.5 million kilometers in all directions from its center where it meets the gravitational influence of the Sun. This larger sphere, has a diameter of 3 million kilometers which encompasses the Moon, has 13 million times the volume of the physical Earth and through it, passes some more than 55,000 times the amount of solar energy which is available on the surface of the planet.”
GE⊕-LPS would demonstrate feasibility for several key technologies needed for a cislunar economy and is envisioned to provide a hub of operations in the Greater Earth environment. Eventually, the system could be scaled up to provide clean energy for the Earth as humanity transitions away from fossil fuel consumption later this century.
One emerging technology proposed to aid in construction of the system is a lunar space elevator (LSE) which could efficiently transport materials sourced on the lunar surface to L1. SSP explored this concept in a paper by Charles Radley, a contributor to the Astrostrom report, in a previous post showing that a LSE will be feasible for the Moon in the next few decades (an Earth space elevator won’t be technologically possible in the near future).
Another intriguing aspect of the station is that it would provide artificial gravity in a tourist destination habitat shielded by water and lunar regolith. This facility could be a prototype for future free space settlements in cislunar environs and beyond.
Fabrication of the GE⊕-LPS would depend heavily on automated operations on the Moon such as robotic road construction, mining and manufacturing using in situ resources. Technology readiness levels in these areas are maturing both in terrestrial mining operations, which could be utilized in space, as well as fabrication of solar cells using lunar regolith demonstrated recently by Blue Origin. That company’s Blue Alchemist’s process for autonomously fabricating photovoltaic cells from lunar soil was considered by Astrostrom in the report as a potential source for components of the GE⊕-LPS, if further research can close the business case.
Most of the engineering challenges needed to realize the GE⊕-LPS require no major technological breakthroughs when compared to, for example (given in the report), those needed to commercialize fusion energy. These include further development in the technologies of the lunar space elevator, in situ lunar solar cell manufacturing, lunar material process engineering, thin-film fabrication, lunar propellent production, and a European heavy lift reusable launch system. The latter assumes the system would be solely commissioned by the EU, the target market for the study. Of course, cooperation with the U.S. could leverage SpaceX or Blue Origin reusable launchers expected to mature later this decade. With respect to fusion energy development, technological advances and venture funding have been accelerating over the last few years. Helion, a startup in Everett, Washington is claiming that it will have grid-ready fusion power by 2028 and already has Microsoft lined up as a customer.
Astrostrom estimates that an initial investment of around €10 billion / year over a decade for a total of €100 billion ($110 billion US) would be required to fund the program. They suggest the finances be managed by a consortium of European countries called the Greater Earth Energy Organization (GEEO) to supply power initially to that continent, but eventually expanding globally. Although the budget dwarfs the European Space Agency’s annual expenditures ( €6.5 billion ), the cost does not seem unreasonable when compared to the U.S. allocation of $369 billion in incentives for energy and climate-related programs in the recently passed Inflation Reduction Act. The GE⊕-LPS should eventually provide a return on investment through increasing profits from a cislunar economy, peaceful international cooperation and benefits from clean energy security.
The GE⊕-LPS adds to a growing list of space-based solar power concepts being studied by several nations to provide clean, reliable baseload energy alternatives for an expanding economy that most experts agree needs to eventually migrate away from dependence on fossil fuels to reduce carbon emissions. Competition will produce the most cost effective system which, coupled with an array of other carbon-free energy sources including nuclear fission and fusion, can provide “always on” power during a gradual, carefully planned transition away from fossil fuels. The GE⊕-LPS is particularly attractive as it would leverage resources from the Moon and develop lunar manufacturing infrastructure while serving a potential tourist market that could pave the way for space settlement.
An engineer pondering chemical processes for use in space learned in an advanced postgraduate course in Astrochemical Engineering. Credits: DALL∙E 3
In a paper in the journal Sustainability a global team of researchers has created a two year curriculum to train the next generation of engineers who will design the chemical processes for the new industrial revolution expected to unfold on the high frontier in the next few decades.
Current chemical engineering (ChE) training is not adequate to prepare the next generation of leaders who will guide humanity through the utilization of material resources in space as we expand out into the solar system.
Astrochemical Engineering is a potential new field of study that will adapt ChE to extraterrestrial environments for in situ resource utilization (ISRU) on the Moon, Mars and in the Asteroid Belt, as well as for in-space operations. The body of knowledge suggested in this paper, culminating in Master of Science degree, will provide training to inform the design ISRU equipment, life support systems, the recycling of wastes, and chemical processes adapted for the unique environments of microgravity and space radiation, all under extreme mass and power constraints.
The first year of the program focuses on theory and fundamentals with a core module teaching the physical science of celestial bodies of the solar system, low gravity processes, cryochemistry (extremely low temperature chemistry), and of particular interest, circular systems as applied to environmental control and life support systems (ECLSS) to recycle materials as much as possible. Students have the option to specialize in either process engineering or a more general concentration in space science.
For the process engineering option in year one, students will learn how materials and fluids behave in the extreme cold of space. This will include the types of equipment needed for processes in a vacuum environment including microreactors and heat exchangers, as well as methods for separation and mixing of raw materials.
In the space science specialization, year one will include production of energy and its utilization in space. Applications include solar energy capture and conversion to electricity, nuclear fission/fusion energy, artificial photosynthesis, and the role of energy in life support systems.
In the second year, students learn basic chemical processes for ISRU on other worlds. Processes such as electrolysis for cracking hydrogen and oxygen from water; and the reactions Sabatier, Fischer-Tropsch and Haber-Bosche for production of useful materials.
The second year process engineering specialization focuses on ISRU on the Moon with ice mining, processing regolith and fluid transport under vacuum conditions. Propulsion systems are also covered including methane/oxygen engines, hydrogen logistics, cryogenic propellent handling in space and both nuclear thermal and electric propulsion. Space science specialization in year two covers life support systems and space agriculture.
A design project is required at the end of each year to demonstrate comprehension of the concepts learned in the curriculum, and is split between an individual report and a group project.