Starship changes the space settlement paradigm

Artist rendering of an earlier version of Starship (formerly BFR, Interplanetary Transport System) approaching Mars. Credits: SpaceX

A mission architecture for Starship is described in a preprint open access article published online December 2 to be released in the next issue of the New Space Journal. The paper lays out a proposed strategy for using the yet to be validated SpaceX reusable spacecraft to establish a self sustaining colony on Mars. The authors* are a mix of space practitioners from NASA, the space industry and academia. No doubt Elon Musk may be thinking along these lines as he lays his company’s plans to assist the human race in becoming a multi-planet species.

Starship is a game changer. It is being designed from the start to deposit massive payloads on The Red Planet. It will be capable of delivering 100 metric tons of equipment and/or crew to the Martian surface, and after refueling from locally sourced resources, returning to Earth. This capability will not only enable extensive operations on Mars, it will open up the inner solar system to affordable and sustainable colonization.

Some of the assumptions posited for the mission architecture are based on Musk’s own vision for his company’s flagship space vehicle as articulated in the New Space Journal back in 2017, namely that two uncrewed Starships would initially be sent to the surface of Mars with equipment to prepare for a sustainable human presence.

“These first uncrewed Starships should remain on the surface of Mars indefinitely and serve as infrastructure for building up the human base.”

The initial landing sites will be selected based on where the water is. The priority will be finding and characterizing ice deposits so that humans will eventually be able to locally source water for life support and to produce fuel for the trip home. The automated payloads of these initial missions will be mobile platforms similar in design to equipment planned for upcoming robotic missions to the Moon in the next couple of years. One such spacecraft, the Volatiles Investigating Polar Exploration Rover (VIPER) is discussed with its suite of instruments that will be used to assess the composition, distribution, and depth of subsurface ice to inform follow-on ISRU operations.

“The use of water ice for ISRU has been determined as a critical feature of sustainability for a long-term human presence on Mars.”

VIPER Searches for Water Ice on the Moon
Conceptual depiction of the NASA VIPER rover planned for delivery to the Moon’s south pole in late 2023. A mobile platform with a similar suite of instruments based on this design could be launched to Mars aboard Starship. Credits: NASA

To harvest water from subsurface ice the authors suggest using proven technology such as a Rodriguez Well (Rodwell). In use since 1995, a Rodwell has been providing drinking water for the U.S. research station in Antarctica. The U.S. Army Engineer Research and Development Center’s (ERDC) Cold Region Research and Engineering Laboratory (CRREL)  has been working with NASA to prove the technology for use in space in advance of a human outpost on Mars.

Diagram depicting how a Rodriquez Well works. Credits: U.S. Army Engineer Research and Development Center

“Rodwell systems are robust and still in routine use in polar regions on Earth.”

The next order of business is power generation. The authors suggest using solar power as a first choice because the technology readiness level is the most mature at this time. Autonomous deployment of a photovoltaic solar array would be carried out on the initial uncrewed missions. But due to frequent dust storms that could diminish the array reliability, nuclear power may be a more appropriate long term solution once space based nuclear power is proven. NASA’s Glenn Research center is working on Fission Surface Power with plans for a lunar Technology Demonstration Mission in the near future. A solid core nuclear reactor is also an option as the technology is well understood.

These initial missions will robotically assess the Martian environment at the landing sites to inform designs of subsequent equipment to be delivered by crewed Starship missions in future launch windows occurring every 26 months. Weather monitoring will be performed as well as measurements of radiation levels and geomorphology to inform designs of habitats and trafficability. Remotely controlled experiments on hydroponics will also be performed to understand how to produce food. Testing will be needed on excavation, drilling, and construction methods to provide data on how infrastructure for a permanent colony will be robustly designed.

Starship’s ample payload capacity will allow prepositioning of supplies of food and water to support human missions before self sustaining ISRU and agriculture can be established. Communication equipment will be deployed and landing sites prepared for the arrival of people. Much of these activities will be tested on the Moon ahead of a Mars mission.

Production of methane and oxygen in situ on Mars will enable refueling of Starship for the trip home, as envisioned in 1990 by Robert Zubrin and David Baker with their Mars Direct mission architecture. Zubrin’s Pioneer Astronautics may even play a role through provision of equipment for ISRU as they are already working on hardware that could be tested on the Moon soon. One could envision a partnership between Zubrin and Musk as their organizations have common visions, and Zubrin has written about the transformative potential of Starship. When people arrive on Starship during a subsequent launch window after the placement of uncrewed vehicles, further testing of ISRU and life support equipment will be performed with humans in the loop to validate these technologies that will enable Mars settlements to sustain themselves.

If Musk is successful in establishing a permanent self-sustaining colony on Mars will it be a true settlement? The National Space Society in their definition says that a space settlement “..includes where families live on a permanent basis, and…with the goal of becoming…biologically self-sustaining…”, i.e. capable of human reproduction. The definition is agnostic as to if the settlement is in space or on a planetary surface. Musk wants to established cities on the planet housing millions of people by mid century. But does this make sense if settlers can’t have healthy children in the lower gravity of Mars? SSP explored this question in a recent post. Hopefully, once Starship becomes operational, an artificial gravity research facility in LEO will be high on Musk’s priority list to answer this question before he gets too far down the Martian urban planning roadmap. Would he ever consider a change in space settlement strategy in favor of O’Neill type free space colonies? Starship could certainly help facilitate the realization of that vision.

If all goes according to plan, SpaceX will attempt the first orbital flight of a Starship prototype sometime next year, which also happens to be when the next launch window opens up for trips to Mars. Obviously, nothing in rocket development goes according to plan, so the initial flight ready design is at least a year away optimistically. And we know Musk’s timelines are notoriously aspirational. As ambitious as Musk is in driving his company toward the goal of colonizing Mars, it seems unlikely that an initial uncrewed mission with all its flight ready automated hardware as described above could be ready by the next launch window in 2024. But what about 2026? NASA’s current plans for return to the Moon call for a human rated version of Starship as a lunar lander “…no earlier then 2025”. However, Japanese billionaire Yusaku Maezawathe’s Dear Moon mission sending 8 crew members around Luna with a crewed Starship is still planned for 2023. A lot of details are yet to be worked out and we still have not covered the topic of Planetary Protection nor the granting of a launch license to SpaceX by the FAA, but could a Starship human mission to Mars take place in 2028? Let me know what you think.

“The SpaceX Starship vehicle fundamentally changes the paradigm for human exploration of space and enables humans to develop into a multi-planet species.”

* Authors of Mission Architecture Using the SpaceX Starship Vehicle to Enable a Sustained Human Presence on Mars Jennifer L. Heldmann, Margarita M. Marinova, Darlene S.S. Lim, David Wilson, Peter Carrato, Keith Kennedy, Ann Esbeck, Tony Anthony Colaprete, Rick C. Elphic, Janine Captain, Kris Zacny, Leo Stolov, Boleslaw Mellerowicz, Joseph Palmowski, Ali M. Bramson, Nathaniel Putzig, Gareth Morgan, Hanna Sizemore, and Josh Coyan

Making the MMOST of ISRU for the Moon and Mars

Conceptual illustration of the Lunar OXygen In-situ Experiment (LOXIE) Production Prototype. Credits: Mark Berggren / Pioneer Astronautics

Here’s a novel way to produce both oxygen and steel in situ on the Moon and eventually on Mars. Under a NASA SBIR Phase II Sequential Contract, Pioneer Astronautics along with team members Honeybee Robotics and the Colorado School of Mines are developing what they call Moon to Mars Oxygen and Steel Technology (MMOST), an integrated system to produce metallic iron/steel and oxygen from processed lunar regolith.

In a presentation at a meeting of the Lunar Surface Innovation Consortium last month, Mark Berggren of Pioneer Astronautics gave an update on the team’s efforts. Progress has been made on several key processes under development as part of the overall manufacturing flow. Output products will include oxygen for either life support or rocket fuel oxidizer and metallic iron for additive manufacturing of lunar steel components.

MMOST process flow diagram. Credits: Mark Berggren / Pioneer Astronautics

The immediate next steps for the MMOST development program will be continual refinement of each process module, protocols for minimization of power requirements, demonstration of LOXIE in a vacuum environment and then optimization of mass, volume and power specifications for a scaled-up system toward flight readiness hardware.

Potential follow-on activities may include a robotic sub-scale LOXIE lunar flight experiment that could be sent to the Moon via a Commercial Lunar Payload Services (CLPS) lander. As part of the Artemis program crews could possibly demonstrate a pilot unit to validate manufacturing in the lunar environment. If successful, a full scale MMOST commercial system could come next in support of lunar base operations as part of a cis-lunar economy.

Wind Rider propellentless space drive for rapid transit across the solar system

Conceptual illustration of the Wind Rider plasma magnet drive: Credits: Brent Freeze

When humanity eventually moves out into the galaxy to settle new worlds, we will need to take stock of potentially habitable planets capable of sustaining life as we know it to identify potential new homes. The James Webb Space Telescope will have the capability to search for exoplanets in the habitable zones of stars in our local neighborhood by using spectroscopy to reveal biosignatures in the planet’s atmosphere as starlight filters through it when transiting across the disk of the host star. But to discern more detail on the surfaces of these distant new Earths, much more powerful methods for imaging will be needed.

One such method could be to utilize a solar gravitational lens (SGL), a property arising from the Theory of Relativity where large gravitating masses bend light resulting in the possibility of a natural telescope capable of very powerful magnification and significant angular resolution. This would require placing a detector beyond 550 astronomical units from the sun. Such an instrument could potentially resolve the size and shape of continents adjacent to oceans on exoplanets orbiting TRAPPIST-1 or other nearby stars. Located 40 light years away, this star is an ultra-cool red dwarf with seven rocky planets, three of which are in the habitable zone where liquid water can exist.

But getting out to this distance with conventional rockets would take over a hundred years. Voyager 1 is currently over 150 AU from the sun and was launched back in 1977. Enter the Wind Rider plasma magnet drive. A pathfinder mission using this concept to demonstrate the technology of a mission out to the SGL to image planets in the TRAPPIST-1 system will be presented by Brent Feeze, an AIAA mechanical engineer, in a poster session at the American Geophysical Union meeting this month. Calculations show that a spacecraft using this drive could sprint to the SGL focal plane in about eight years. The Wind Rider was also described recently by Alex Tolley on Centauri Dreams.

Originally conceived by John Slough at the University of Washington under a NASA NIAC grant from 2004 – 2005, the system is a propellentless drive that works by creating a rotating magnetic field that traps the charged particles in the solar wind to create a large circular electric current, inducing a large scale magnetosphere. Thrust is imparted to the craft via magnetic fields, analogous to the coupling induced in an electric motor. Unlike a solar sail, the trajectory of the craft is a straight line out from the sun toward its destination, with no gravity assists from other planets and a rapid acceleration to a velocity approaching that of the solar wing (400 km/s).

Jeff Greason, Board Chairman of the Tau Zero Foundation covered the technology during a presentation at the Tennessee Valley Interstellar Workshop back in 2017. He called it a “Ridiculously high thrust to weight magnetic sail” that by chemical propulsion standards is “blindingly fast”. Greason was looking into how Tau Zero could help support a small technology demonstrator on a ride share launch but it would have to be on payloads headed out toward cislunar space to be free of the Earth’s magnetosphere which deflects the solar wind.

Alex Tolley: “If it works as advertised, it would open up the solar system to exploration by fast, cheap robotic probes and eventually crewed ships.”

To be able to image a potentially new world for interstellar settlement is an exciting technology. The hardware required is not expensive and the scientific payoff of such a mission would be valuable from an astrophysical perspective. However, what we already know about the TRAPPIST-1 system is that life as we know it would have a tough time getting started and persisting because these worlds are bathed in intense ultraviolet radiation as they orbit within a range of about 3 – 6 million kilometers from TRAPPIST-1. That said, a pathfinder mission of a Wave Rider to send imaging equipment to the SGL could help prove the technology for rapid transit to the outer solar system as well as validating imaging techniques which could be used on more promising exoplanet candidates for eventual settlement. And expanding our knowledge of planetary systems in the galaxy would be icing on the cake.

TRAPPIST-1e – JPL Travel Poster. Beautiful but life is unlikely due to intense radiation from stellar winds: Credits: Jet Propulsion Laboratory