Power towers at the Peaks of Eternal Light

Peaks of Eternal Light at the lunar south pole annotated with crater labels. Mosaic of 40 images taken by the ESA SMART-1 spacecraft 2005/2006. Area covers 500 x 150 km. Credits: ESA/SMART-1/AMIE camera team; M. Ellouzi/B. Foing, CC BY-SA 3.0 IGO

As most space settlement enthusiasts know, the Peaks of Eternal Light on the rims of craters in the lunar polar regions hold much promise as the ideal location to place collectors for solar energy to power ice mining operations. At the south pole in particular, these peaks lie within just a few kilometers of large frozen water deposits in the permanently dark shallows. But how much solar power is available? Companies such as Trans Astronautica Corporation will want to know so they can inform plans for their Sun Flower™ collector invention as part of a Lunar Polar Mining Outpost.

In a paper posted this month on the pre-print server arXiv.org, a team of researchers at Harvard University and Technische Universität Berlin present the results of a study to answer this question. Using data from high resolution maps of solar illumination on the ridges of Shackleton crater and others, they determined the total available power from collector towers of various heights if they were placed at these locations.

The study found that the power available depends heavily on the height of the panels above the local surface but could be substantial, from a few megawatts for towers of heights less than 100m up to the gigawatt range for towers of 500m or more. This is sufficient power for mining several thousand tons of water per year from Shackleton crater.

Stability and limitations of environmental control and life support systems for space habitats

Image of Biosphere 2, a research facility to support the development of computer models that simulate the biological, physical and chemical processes to predict ecosystem response to environmental change. Credits: Biosphere 2 / University of Arizona

Once cheap access to space is realized, probably the most important technological challenge for permanent space settlements behind radiation protection and artificial gravity is a robust environmental control and life support system (ECLSS). Such a system needs to be reliably stable over long duration space missions, and eventually will need to demonstrate closure for permanent outposts on the Moon, Mars or in free space. In his thesis for a Master of Science Degree in Space Studies, Curt Holmer defines the stability of the complex web of interactions between biological, physical and chemical processes in an ECLSS and examines the early warning signs of critical transitions between systems so that appropriate mitigations can be taken before catastrophic failure occurs.

Holmer mathematically modeled the stability of an ECLSS as it is linked to the degree of closure and the complexity of the ecosystem and then validated it against actual results as demonstrated by NASA’s Lunar-Mars Life Support Test Project (LMLSTP), the first autonomous ECLSS chamber study designed by NASA to evaluate regenerative life support systems with human crews. The research concluded that current computer simulations are now capable of modeling real world experiments while duplicating actual results, but refinement of the models is key for continuous iteration and innovation of designs of ECLSS toward safe and permanent space habitats.

This research will be critical for establishing space settlements especially with respect to how much consumables are needed as “buffers” in a closed, or semi-closed life support system, when the model’s metrics indicate they are needed to mitigate instabilities. Such instabilities were encountered during the first test runs of Biosphere 2 in the early 1990s.

As SpaceX races to build a colony on Mars, they will need this type of tool to help plan the life support system. Holmer believes that completely closed life support systems for relatively large long term settlements are at least 15 to 20 years away. That means that SpaceX will need to resupply materials and consumables due to losses in their initial outpost who’s life support system in all probability will not be completely closed during the early phases of the project over the next decade. Even SpaceX cannot reduce launch costs low enough to make long term resupply economically viable. They will eventually want to drive toward a fully self sustaining ECLSS. That said, depending on how the company funds its initiatives and sets up it’s supply chains, they may not need a completely closed system for quite some time.

Of course there are sources of many of the consumables on Mars that could support a colony but not all the elements critical for ecosystems, such as nitrogen, are abundant there. There are sources of some consumables outside the Earth’s gravity well which could lower transportation costs and extend the timeline needed for complete closure. SSP covered the SHEPHERD asteroid retrieval concept in which icy planetesimals, some containing nitrogen and other volatiles needed for life support, could be harvested from the asteroid belt and transported to Mars as a supply of consumables for surface operations. TransAstra Corporation is already working on their Asteroid Provided In-situ Supplies family of flight systems that could help build the infrastructure needed for this element of the ecosystem. It may be a race between development of the competing technologies of a self-sustaining ECLSS vs. practical asteroid mining. The bigger question is if humans can thrive long term on the surface of Mars under .38G gravity. In the next century, O’Neill type colonies, perhaps near a rich source of nitrogen such as Ceres, may be the answer to where safe, long term space settlements with robust ECLSS habitats under 1G will be located.

Curt Holmer appeared recently on the The Space Show discussing his research. I called the show and asked if he had used his modeling to analyze the stability of ecosystems sized for an O’Neill-type colony. He said he had only studied habitats up to the size of the International Space Station, but that it was theoretically possible to analyze this larger ecosystem. He said he would like to pursue further studies of this nature in the future.

DARPA announces Novel Orbital and Moon Manufacturing, Materials and Mass-efficient Design (NOM4D) program

Artist’s concept of projects which could benefit from DARPA’s (NOM4D) plan for robust manufacturing in space. Credits: DARPA

Pronounced “NOMAD” the Defense Advanced Research Projects Agency plan aims to develop technologies for adaptive, off-earth manufacturing to fabricate large structures in space and on the Moon.

Bill Carter, program manager in DARPA’s Defense Sciences Office explains in an announcement of the program, “We will explore the unique advantages afforded by on-orbit manufacturing using advanced materials ferried from Earth. As an example, once we eliminate the need to survive launch, large structures such as antennas and solar panels can be substantially more weight efficient, and potentially much more precise. We will also explore the unique features of in-situ resources obtained from the moon’s surface as they apply to future defense missions. Manufacturing off-earth maximizes mass efficiency and at the same time could serve to enhance stability, agility, and adaptability for a variety of space systems.”

The program will be split into three 18 month phases driven by metrics associated with progressively challenging exemplars such as respectively, a 1-megawatt solar array, a 100m diameter RF reflector, and finally IR reflective structures suitable for use in a segmented long-wave infrared telescope.

Lessons learned from the program could be applied to on-orbit manufacturing operations by commercial space companies as launch costs come down and access to cislunar space becomes more routine for both government and commercial entities.

Are we on the right track for space settlement?

Artist depiction of an O’Neill cylinder from the novel K3+. Credits: Katie Lane (Full distribution rights reserved by Erasmo Acosta)

Erasmo Acosta thinks we might be headed in the wrong direction, that we may be suffering from planetary chauvinism and the better way may be to colonize space with O’Neill cylinders. He makes his case in a post on the Predict section of Medium. SSP has long been a strong proponent of free space O’Neill-type settlements, the advantages of which are numerous, not the least of which is 1G artificial gravity to prevent detrimental human health issues that may arise for occupants of colonies with lower gravity on the Moon or Mars. Such space settlements would house millions of people in perfect 70 degree controlled weather without the threat of natural disasters.

Jeff Bezos has advocated for this philosophy with the aim of moving heavy industry off world and preserving Earth’s environment for “residential zoning”. Recent developments seem to indicate he may be spending more of his time focusing on the realization of that vision.

Acosta, a retired software engineer, feels so strongly that O’Neill cylinders will be the preferred mode of space settlement he wrote a novel called K3+ which depicts a future in the next century where humans will be living in thousands of O’Neill cylinders in a “post-scarcity” civilization of virtually unlimited resources. Acosta envisions Mercury as a source of raw materials:

“The planet’s proximity to the sun, its low gravity, and metal-rich concentration make it the ideal source of raw materials for constructing thousands of O’Neill cylinders.”

In a previous post on Predict, he explains how to kickstart a program for harnessing space resources to fabricate these colonies.

After many years of construction, multiple rings of rotating habitats would eventually encircle the sun harnessing a vast amount of the energy output of our star approaching the configuration of a Dyson sphere.

Artist depiction of multiple rings of rotating habitats around the sun. Credits: Katie Lane (Full distribution rights reserved by Erasmo Acosta)

Finally, as a tribute to the father of free space colonies and an inspiration for a generation of space settlement advocates, I’d like to close out this post with a link to the just released trailer for the much anticipated documentary: The High Frontier, The Untold Story of Gerard K. O’Neill.

Simpler methane production on Mars

Artist’s depiction of activities at an early Mars base which could include methane production. Credits: NASA

A team of physicists at the University of California, Irvine has found a short cut for efficient propellant production on Mars. The UCI researchers have discovered a way to streamline the conventional two step Sabatier process which first electrolyzes water into hydrogen before reacting with carbon dioxide in the Martian atmosphere to create methane. Both SpaceX and Blue Origin use methane in their rocket engine designs. The novel approach simplifies fuel production by leveraging zinc as a “synthetic enzyme,” which catalyzes carbon dioxide to synthesize methane directly. The improved process will reduce the amount of ISRU equipment (and therefore weight and launch costs) needed for transport to the surface of Mars to facilitate propellent production required for the trip home. The research has only demonstrated proof of concept so follow-on studies are required to improve the TRL for flight-ready hardware.