Student concept for a crewed lunar rover in support of Artemis

Image depicting EMPRESS. Credits: SEDS-UPRM

When the first woman and next man return to the Moon under the Artemis Program, they will need a mobile scientific platform to assist with exploration of the lunar south pole. Under the Revolutionary Aerospace System Concepts – Academic Linkage (RASC-AL) competition, a team of Students for the Exploration and Development of Space (SEDS) at the University of Puerto Rico, Mayaguez (UPRM) won 1st Place in the contest with their Exploration Multi-Purpose Rover for Expanding Surface Science (EMPRESS). The rover would land at Shackleton crater at the lunar south pole in 2023 taking samples and exploring the region in preparation for the first crewed Artemis mission in 2024.

The rover is envisioned to include two robotic arms and a suite of seven scientific instruments to characterize the lunar surface composition as well as other high priority astrophysical investigations. One the proposed instruments is a neutron spectrometer that could sense the amount of hydrogen in the regolith using data from maps compiled by the Volatiles Investigating Polar Exploration Rover (VIPER) which will survey the lunar south pole for the presence of volatiles and water ahead of the Artemis Missions. This could pave the way for ice mining operations and eventual space settlements in a cislunar water economy.

University of Puerto Rico at Mayagüez winning SEDS team of the 2020 RASC-AL Virtual Forum. Credits: RASC-AL

The current state of the U.S. space industrial base

Credits: USSF-DIU-AFRL

The U.S. Space Force, Air Force Research Laboratory and the Defense Innovation Unit just completed a workshop on the state of the U.S. space industry. The virtual event, hosted by New Space New Mexico, brought together more than 120 representatives across the federal government, industry, and academia to access the current health of the America’s space industry and to provide recommendations for strengthening that industrial base. The resulting report called “State of the Space Industrial Base 2020” has just been released this month.

The workshop focused on 6 key areas thought to be the locus of future space industry activities:

  • Space policy and finance tools
  • Space information services
  • Space transportation and logistics to, in and from cislunar space and beyond.
  • Human presence in space for exploration, space tourism, space manufacturing and resource extraction
  • Power for space systems to enable the full range of emerging space applications
  • Space manufacturing and resource extraction

Recommendations included:

  1. Industry should aggressively pursue partnerships with the US government to develop and operate joint commercial, civil and defense space capabilities. These partnerships should jointly fund developing capabilities that benefit from but are not heavily reliant on US government investment and revenue for their commercial viability.
  2. Entrepreneurs with innovative and potentially dual-use technologies must improve the protection of their intellectual property from unintended foreign assimilation, including protecting their networks from cyber exfiltration attempts, and avoiding exit strategies that transfer intellectual property to foreign control hostile to US interests.
  3. Businesses should engage across the US educational system to guide and develop the future STEM workforce to fuel the future space economy, to include funding for undergraduate scholarships/loans for STEM students, internships and providing space professionals to support instruction in space subjects.
  4. Industry should improve ties and partnerships with domestic and allied parts, subcomponent and subsystem manufacturers to strengthen trust and resilience in space supply chains.

Self-replicating fungi radiation shielding for deep space settlements

Without adequate shielding, humans will be bombarded with lethal galactic cosmic radiation in deep space. Credits: NASA / scitechdaily.com

Galactic cosmic radiation poses a significant risk to humans in deep space. If a type of shielding could be found that could be “grown” through biotechnology starting from microscopic sources, significant savings in mass needed to be launched from Earth could be realized. It is already known that certain fungi can convert high-energy radiation into chemical energy through a process called radiosynthesis, analogous to photosynthesis in plants. Fungi have been found thriving in extremely radioactive environments such as the Chernobyl Nuclear Power Plant and even on the exteriors of spacecraft in Earth orbit.

In a paper just uploaded to the preprint server for biology bioRxiv, results of a study carried out on the International Space Station have shown that a microbial lawn of the fungus C. sphaerospermum can be cultivated in microgravity and not only consumes and thrives on radiation, it provides shielding that if scaled up, could sufficiently protect humans in deep space settlements.

Mitigation of the risks and challenges of lunar dust

Astronaut Gene Cernan covered in Lunar dust after an EVA during the Apollo 17 mission. Credits: NASA

Catch my presentation at the Moon Society’s Lunar Development Conference that took place on July 19 and 20 in which I describe the hazards posed by lunar dust and several solutions needed for space settlement. This is definitely on the critical path for large scale operations on the moon.

There were a couple of technical glitches in the presentation, one of which was playing a simplistic animation of deploying a dust-free landing pad beneath an initial lunar lander using telerobots. You can view the animation here. Hat tip to Doug Plata and the Space Development Network for the source material used in the presentation. Many of the conference presentations are available on the Moon Society’s YouTube Channel.

U.S. Department of Energy seeks contractors to design nuclear reactors for the Moon

Credits: Idaho National Laboratory

Battelle Energy Alliance, which manages and operates the U.S. Department of Energy’s (DOE) Idaho National Laboratory, just announced a Request for Information (RFI) on a fission surface power (FSP) source. The Laboratory, in collaboration with the DOE and NASA is seeking innovative technologies and approaches for preliminary designs of a FSP to test and validate operation on the Moon.

According to the RFT: “A reliable, durable energy source is a crucial element to enable the long-duration exploration of space and allow sustainable human presence in the harsh space environment.”

The operational goal is to: “Develop the FSP system with capability of operating autonomously, with the capability of autonomous or commanded on/off cycles. Develop the FSP system to be capable of surviving a single credible failure without reducing electric power capacity by more than 50%. This design objective flows from essential power needs on the Moon or Mars following a component failure. BEA [Battelle Energy Alliance] also encourages respondents to develop the FSP system for a minimum operational life of not less than 10 years at full electric power output.”

The water economy of cislunar space

Illustration of an ice extraction concept for collection of water on the Moon. Credits: George Sowers / Colorado School of Mines

Mining the Moon changes everything. In an article in Air and Space, several prominent scientists we’ve been following discuss how in situ resource utilization (ISRU) can close the business case for companies that will build the infrastructure for a cislunar economy.

George Sowers of Colorado School of Mines and lead researcher on a recent study of ice mining in the solar system believes that water is “the oil of space” which can be used for all sorts of propulsion needs as well as supporting life. He believes that “…the economy of space will run off of water.”

Kevin Cannon, who has developed a treasure map for where the ice deposits are located at lunar poles based on satellite data to support ISRU, believes that we need to follow up with actual prospecting hardware to confirm how much water is actually present.

Joel Sercel, CEO of Trans Astronautica Corporation and recent recipient of a Phase II NIAC grant for a Lunar Polar Mining Outpost, has proposed calling a base located at the Moon’s north pole “New Mesopotamia” likening it to the Fertile Crescent in the Middle East on Earth.

Most of the experts agree that fuel depots on the moon are needed for a sustainable economy in cislunar space before we can push off to Mars and beyond.

Orbite Corporation forms space hospitality business around civilian training

Anoushah Ansari, the first female civilian spaceflight participant. Credits: spaceadventures.com

The Seattle-based start up envisions a Spaceflight Gateway and Astronaut Training Complex for new spaceflight participants and their families. One of the founders, Jason Andrews was quoted in Space News stating “There are now four new human-capable vehicles going into operation this year. The 2020s will be the decade of commercial human spaceflight.”

Virgin Galactic and others will host their own training programs but Orbite will help grease the skids so to speak, by offering first time space travelers physical, psychological and other training to enhance their spaceflight experience.

Going up? Space elevators getting ready for prime time

Artist’s impression of a space elevator. Credits: Steve Bowers / orionsarm.com

The International Space Elevator Consortium (ISEC) has just published a position paper on the technology readiness of this alternative to launch vehicles subject to the constraints of the rocket equation. Recent advances in material science of single crystal graphene and other alternatives show potential for fabrication of tethers long enough and with the required strength to enable space elevators by the late 2030s. The authors present a case that the demand for launching enough mass to support ESA’s Moon Village, space based solar power and Elon Musk’s vision for Mars colonies far exceeds projected conventional rocket capabilities. Space elevators could fill this need while being better for the environment.

Diagram of a space elevator system. Credits: ISEC

Mars 2080: Imagine Documentaries plans film depicting a family’s move to a Mars colony

Artist concept of a city on Mars. Credits: Nick Hvostik

In an exclusive report in Variety, Imagine Documentaries along with Proctor and Gamble are co-financing a futuristic film of a family’s relocation from Earth to the red planet and how they adjust to their new space settlement. The film is based on a concept by Stephen Petranek, author of “How We’ll Live on Mars”. Brian Grazer, Ron Howard and Imagine Documentaries co-head Justin Wilkes will produce the film. Variety quotes Wilkes as saying “We’re not calling it science fiction, we’re calling it science factual”. The team will consult with SpaceX CEO Elon Musk, among others to “…forecast practical technologies”.

Imagine Entertainment’s founders Brian Grazer and Ron Howard; Imagine Documentary President Justin Wilkes. Photo credits: Imagine Entertainment.

Pottery made from (simulated) Martian clay

Ceramics sintered using a MGS slurry system employing classic pottery (potter’s wheel), slip casting, material extrusion (robocasting/direct ink writing), 3D printing (layerwise slurry deposition with binder jetting) and as a reference dry pressing. Credits: David Karl et al.*

Development of the methods for in situ resource utilization on Mars requires validation ahead of time. Making durable and useful ceramics is one such material processing technique that would be valuable. In a paper just posted on the arXiv preprint server to be published in the journal Open Ceramics, David Karl at the Technische Universitaet Berlin and others* present findings on a study of such methods using Mars global simulants (MGS) as a proxy for clay on the Red Planet. These simulants, provided by Kevin Cannon’s Center for Asteroid and Lunar Surface Science (CLASS) Exolith Lab at the University of Central Florida, deliver superior strength when compared to other ISRU materials, as mentioned in a recent Tweet by Cannon.

The paper also documents the results of a sophisticated additive manufacturing technique called layerwise slurry deposition (LSD) using the MGS. As mentioned in the paper’s Introduction, “To highlight the importance of clay as a medium for human civilizations and thought (along with illustrating the usefulness of the unfired/fired concept, as cuneiform tablets are found in unfired as well as fired state), cuneiform tablets from 3D scans were reproduced as inspirational artifacts, illustrating the excellent LSD printing resolution”.

(Top left) Flowchart of MGS slurry production (described in detail in [5]), (top right) schematic of 2 the layerwise slurry deposition and (bottom) processing path for cuneiform tablets from 3D scans of 3 original cuneiform tablets made during the Ur III period (ca. 2100-2000 BC), produced as technological 4 demonstrators for LSD and inspirational artifacts for Mars colonization. Credits: David Karl et al.*

___________

* D. Karl, F. Kamutzki, P. Lima, A. Gili, T. Duminy, A. Zocca, J. Günster,A. Gurlo, Sintering of ceramics for clay in situ resource utilization on Mars, Open Ceramics, https://doi.org/10.1016/j.oceram.2020.100008.