A stepwise strategy for the application of biotechnology to address four key challenges of Martian settlement is presented in a Comment in Nature Biotechnology. As settlement progresses, a phased developmental approach is proposed starting on Earth with gradual migration of industry to Mars for the production of food, materials, therapeutics and waste reclamation toward an efficient closed-loop life support system.
Incremental integration of biotechnology into Mars mission designs – Credits: Shannon N. Nangle, et al. via Nature Biotechnology
If we ever settle Mars, in-situ resource utilization (ISRU) is essential for sustainability of a Martian colony as dependence on Earth for resupply would be too expensive. UC Berkeley and Lawrence Berkeley National Lab chemists are developing a biohybrid system which attaches bacteria to nanowires that when exposed to sunlight and locally available carbon dioxide and water, produce a useful organic compound called acetate. Acetate is a building block for a range of products including fuels, plastics, drugs or even yeast. A byproduct of the chemical reaction is oxygen, which could be used for breathable air. There is even a dual use on Earth for carbon capture.
A device to capture carbon dioxide from the air and convert it to useful organic products. On left is the chamber containing the nanowire/bacteria hybrid that reduces CO2 to form acetate. On the right is the chamber where oxygen is produced. (UC Berkeley photo by Peidong Yang)
Illustration of the SHEPHERD Concept. Credits: Peter Jenniskens, et al., New Space (2015)
Although somewhat dated this paper is still relevant and the technology is not only feasible, its open source and available for any startup company interested in capitalizing on the the resources available from asteroid mining. Be sure and catch the Ted Talk by Dr. Bruce Damer himself.