One of the difficulties of designing solar power systems for use on the Moon is the challenge of energy storage during the 14 day lunar night at lower latitudes far from the peaks of eternal light at the poles. Such systems would benefit from technology that leverages in situ resource utilization (ISRU) for this critical function rather then expensively transporting batteries from Earth. It would be ideal to model these systems prior to use via computer simulations to optimize the design before bending metal. In the journal Advances in Space Research, Spanish physicists Mario F. Palos and Ricard González-Cinca explore this approach in a paper that examines an ISRU-based system for energy storage and electricity generation.
The architecture of the proposed system, dubbed Lunar ISRU Energy Storage and Electrical Generation (LIESEG), collects solar energy during the lunar day via a mirror field to concentrate sunlight on a receiving pipe containing a heat transfer fluid (e.g. molten sodium). The heated fluid flows to a thermal mass raising the temperature of the energy reservoir. The resultant stored thermal energy from the reservoir is discharged through a second fluid loop used to drive a Stirling engine for electricity production during both day and night. A third heat rejection loop thermally regulates the system by transferring heat from the cold side of the heat engine to the radiator. This modular design balances efficiency and durability under extreme lunar conditions.
The ISRU implementation angle of the study emphasizes the use of lunar regolith and other local materials to minimize reliance on Earth-based supplies. This not only reduces launch costs but also aligns with long-term sustainability goals for lunar habitats.
To analyze the LIESEG system performance, simulations were carried out using EcosimPro software, a tool used by the European Space Agency in multiple aerospace applications, to assess power output, efficiency, and scalability. A comprehensive theoretical model based on the thermodynamics of the subsystems under lunar conditions was developed to analyze the energy flow and efficiency of the system. The study evaluated the specific power performance (power output divided by launch mass) of the system, highlighting its potential to be superior to other conventional methods like photovoltaic systems or nuclear reactors in terms of mass efficiency and sustainability. It also discusses the influence of key factors like the thermal conductivity of lunar regolith, the size and orientation of solar collectors, and the efficiency of the Stirling engine.
The authors conducted a detailed trade-off analysis of technologies, considering criteria like transportability, installation complexity, operational reliability, scalability, and lifespan. Solar collection and thermal conversion technologies were highlighted as critical components for achieving operational stability.
The proposed LIESEG system offers a promising approach for sustainable energy production on the Moon, potentially reducing reliance on Earth-launched resources and enabling longer, more autonomous missions. The system’s feasibility was demonstrated through computer modeling whose results show LIESEG to be practical for initial lunar missions with lower energy needs, as well as for later advanced bases requiring higher power outputs (up to 100 kWe and beyond). This research shows that a LIESEG system has merit for planning future development of energy infrastructure supporting initial lunar outposts and eventually, permanent settlements on the Moon.
Space News recently reported that Colorado-based Lunar Outpost has signed an agreement with SpaceX to use Starship to deliver their lunar rover, known as the Lunar Outpost Eagle, to the Moon. Announced November 21, the contract supports the Artemis program with surface mobility and infrastructure services. The agreement positions Starship as the delivery vehicle for Lunar Outpost’s Lunar Terrain Vehicle (LTV), which is a contender for NASA’s Lunar Terrain Vehicle Services (LTVS) program. The exact terms of the contract, including the launch schedule, were not disclosed in the announcements. Lunar Outpost has assembled a contractor team under the banner “Lunar Dawn” to execute the company’s LTV solution. The collaborative development program includes in industry leaders Leidos, MDA Space, Goodyear, and General Motors.
Rover Design Features
Mobility and Functionality: The Lunar Outpost Eagle is designed to support both crewed and autonomous navigation on the lunar surface. It’s built to operate even during the harsh lunar night, exhibiting resilience against the Moon’s extreme temperature changes.
Collaborative Development: The Lunar Dawn team brings expertise in spacecraft design, robotics, automotive technology, and tire manufacturing, ensuring a robust and versatile design.
Size and Capacity: Described as truck-sized, the Eagle LTV is intended to be a valuable vehicle for lunar operations, capable of transporting heavy cargo to support NASA’s Artemis astronauts and commercial activities.
Testing and Refinement: The design has undergone human factors testing at NASA’s Johnson Space Center, with feedback from astronauts being used to refine the vehicle’s usability and functionality.
Future Plans
NASA’s LTV Program: Lunar Outpost is one of three companies selected by NASA for the LTV program to develop rovers to support future Artemis missions. The other two companies are Intuitive Machines and Venturi Astrolab. After a preliminary design review (PDR), NASA will select at least one company for further development and demonstration, with the goal of having a rover operational in time for Artemis 5, currently scheduled for 2030.
Commercial Operations: Beyond NASA’s usage, the rovers will be available for commercial operations when not in use by the agency, aiming to support a sustainable lunar economy. This includes plans for infrastructure development and scientific exploration.
Series A Funding: Lunar Outpost has recently secured a Series A funding round to accelerate the development of the Lunar Outpost Eagle, ensuring that the rover project moves forward regardless of the outcome of NASA’s selection process.
Long-Term Vision: The company’s vision extends to enabling a sustainable human presence in space, with plans to leverage robotics and planetary mobility for development of infrastructure to harness space resources.
This partnership with SpaceX and the development of Eagle under the Lunar Dawn program are pivotal steps in advancing both NASA’s lunar exploration goals and commercial activities on the Moon.
Once delivered to the Moon by Starship, the Eagle rover will drive over harsh regolith terrain which, as discovered by Apollo astronauts when driving the Lunar Roving Vehicle, presents several unique challenges due to the Moon’s distinct environmental conditions. First, lunar dust is highly abrasive and can become electrostatically charged sticking to surfaces and mechanisms resulting in wear and degradation of wheels, bearings, and sensors potentially leading to equipment failure. The Moon’s low gravity can make traction difficult. Rovers might slip or skid becoming less stable when accelerating, braking or turning. Terrain variability and nonuniformity on loose powdery dust or sharp, rocky outcrops could cause stability issues.
These problems can be solved by creating roads with robust, smooth surfaces for safe and reliable mobility on the Moon. Initially, the regolith could be leveled by robots with rollers to compact the regolith to make it less likely to be kicked up by rover wheels. Eventually, technology being developed by companies like Ethos Space for infrastructure on the Moon using their robotic system for melting regolith in place for fabricating lunar landing pads, could be used to build smooth, stable roads.
A network of roads could be constructed to transport water and other resources harvested at the poles to where it would be needed in settlements around the Moon extending from high latitudes down to the equatorial regions. As envisioned by the Space Development Network, this system of roads could be created to provide access to a variety of areas to mine valuable resources as well as thoroughfares to popular exploration and tourism sites. The development of the highway system could start at the poles with telerobots, then eventually be expanded to include equatorial areas and would be fabricated autonomously prior to the arrival of large numbers of settlers.
Longer term, a more efficient method of transportation on the Moon could be magnetic levitation (maglev) trains. Research into this technology has already been proposed by NASA which is actively developing a project named “Flexible Levitation on a Track” (FLOAT), which aims to create a maglev railway system on the lunar surface. This system would use magnetic robots levitating over a flexible film track to transport materials, with the potential to move up to 100 tons of material per day. The FLOAT project has advanced to phase two of NASA’s Innovative Advanced Concepts (NIAC) program.
The European Space Agency (ESA) on October 24 initiated their Second Space Resources Challenge. The Space Resources Challenge is an initiative aimed at stimulating innovation in the field of in-situ resource utilization (ISRU) for lunar and potentially other planetary bodies’ development. Launched in partnership with the Luxembourg Space Agency and their joint European Space Resources Innovation Centre (ESRIC), the competition encourages participants from various backgrounds—including students, startups, and established companies—to develop technologies that can collect, process, and utilize resources on the Moon. The challenge focuses on extracting valuable resources like oxygen for human life support and rocket fuel, as well as metals for construction, from lunar regolith. By fostering a competitive environment, ESA seeks to advance technologies that could reduce the dependency on Earth-supplied materials, thereby making long-term lunar missions more economically viable. The competition not only aims to develop new ISRU technologies but also to build a community of innovators interested in the value of space resources, potentially leading to commercial opportunities in the burgeoning space economy.
Launched on October 24, the second Challenge will focus on extraction and beneficiation of lunar regolith, critical steps in establishing a sustainable human presence on the lunar surface. Teams have until February 20th 2025 to submit proposals. Competition winners can claim €500K for the best performing team and will be awarded a development contract for a feasibility study. A second place prize worth €250K will be awarded to the best team in the category of beneficiation.
The first Challenge, which targeted resource prospecting, took place in 2021 and featured a competition between robotic protypes in ESA’s Lunar Utilisation and Navigation Assembly (LUNA) facility, an advanced research and simulation center designed to support Europe’s efforts in lunar exploration. Located within ESA’s European Space Research and Technology Centre (ESTEC) in the Netherlands, LUNA serves as a testing ground for technologies and systems intended for lunar missions. The facility includes a moon-like environment where various aspects of lunar landing, operations, and human habitation can be simulated.
The Second Resource Challenge will focus on:
Extraction: The collection, hauling and handling of lunar regolith. In LUNA this will be modeled using lunar simulant, which mimics the Moon’s soil. The problem to be solved in this area of the challenge involves designing robotic systems that can collect and transport material efficiently in the harsh lunar environment.
Beneficiation: a term adapted from the terrestrial mining industry, is the process whereby the economic value of an ore is improved by removing the gangue minerals, resulting in a higher-grade product. In the context of ISRU on the Moon, beneficiation will convert regolith into a suitable feedstock through particle sizing and mineral enrichment, preparing it for the next step in the value chain. On the Moon the next process could be extracting valuable resources like oxygen for life support and rocket fuel, and metals for construction or manufacturing, which will be essential for sustaining a long-term human presence on the Moon.
The technology development program will award the teams with the most innovative robotic systems that exhibit autonomy, durability, efficient handling and processing of regolith in the extreme conditions of vacuum, temperature extremes and dust expected in the lunar environment.
Alignment with Strategic Roadmap:
The Second Space Resources Challenge is a pivotal part of ESA’s Space Resources Challenge strategic roadmap to build out the ISRU Value Chain. The next phase of the program will focus on “Watts on the Moon”, i.e. reliable surface power sources for lunar operations. Subsequent phases will develop ISRU applications including extraction of oxygen and water for life support and rocket fuel, with the goal of sustainable in situ factories in the 2030s providing resource supply chains for settlements and the cislunar economy. Integrated systems downstream in the Value Chain, such as Pioneer Astronautics’ (now part of Voyager Space) Moon to Mars Oxygen and Steel Technology (MMOST) application to produce oxygen and metallic iron/steel from lunar regolith, are already under development.
The Second Space Resources Challenge competition is a critical forward-thinking step in ESA’s plans for space development. By concentrating on the extraction and beneficiation of lunar regolith, ESA is not only preparing for the logistics of long-term lunar habitation but also setting a precedent for how future space missions might operate autonomously and sustainably. This challenge underscores ESA’s commitment to innovation, sustainability, and the strategic use of space resources, paving the way for humanity’s next steps in the settlement of the Moon and other worlds in the Solar System.
Kevin Cannon, one of our favorite researchers on ISRU here on SSP, recently appeared on The Space Show to discuss his new position as Senior Lunar Geologist for Ethos Space, a Los Angeles based lunar infrastructure startup that just emerged from stealth last June. Near term (by 2028), the company plans to support the Artemis program by attempting to robotically building landing pads for Starship using lunar regolith, an application SSP covered last year in a ground breaking trade study. Ethos also hopes to extract oxygen from lunar regolith which makes up 80% of rocket propellant and could be a major market segment in a cislunar economy. Incidentally, a few years ago Cannon looked into where on the Moon is the best place to source oxygen.
Long term (20 – 30 years from now) Ethos hopes to use lunar materials to manufacture a sunshade commissioned by world governments that would be placed at the L1 Sun-Earth Lagrange point to combat global warming by blocking 2% of sunlight that reaches our planet. Ethos Space CEO, Ross Centers, is founder of the nonprofit Planetary Sunshade Foundation which issued a report on the state of space based radiation modification about a year ago.
Cannon believes that a sunshade is a better geoengineering solution to cool the climate then cloud seeding with sulfur dioxide aerosols as at least one startup company, Make Sunsets, is proposing. Cannon believes this approach, which he says amounts to “using pollution to fight pollution”, will not be very popular with the general public. Make Sunsets counters this argument with an analysis available on their website showing that sulfur dioxide released high in the stratosphere is highly effective in counteracting the warming effect of carbon dioxide while dispersing to negligible levels globally reducing the chance of producing acid rain, the primary concern of sulfur releases in the lower atmosphere. In fact, a paper in Geophysical Research Letters published last August documents evidence that recent regulations on cargo ship emissions limiting sulfur pollutants may have actually contributed to global warming. In 2020 the International Maritime Organization (IMO) instituted new regulations reducing the maximum allowed sulfur emission per kg of fuel in ships by 80%. As a result, artificial clouds created by ship emissions decreased causing northern hemisphere surface temperatures to rise. This example reinforces the need to study geoengineering projects carefully to prevent unforeseen consequences. With respect to the sunshade, Cannon anticipates that international coordination will definitely be required as some countries may have farm land that would actually benefit from anticipated warming so may not want these regions shaded.
Back to the Moon: On The Space Show podcast Cannon mentioned that Ethos will be partnering with Astrolab, a Hawthorne, California based company which has already been awarded a NASA contract to develop a Lunar Terrain Vehicle for the Artemis program. Astrolab’s current concept, dubbed FLEX, is designed to carry two suited astronauts, has a robotic arm for science excavations, and can survive the extreme temperatures at the Lunar South Pole. The rover can be teleoperated remotely from Earth or driven by suited astronauts. The Ethos robotic system for fabricating lunar landing pads would be towed behind this rover while melting the regolith in place forming molten stripes over multiple passes that cool into igneous rock that would be very robust. The mechanism for how the regolith will be melted was not disclosed but if they are guided by the trade study mentioned above, microwave sintering makes the most sense.
In a post a few years ago on his blog Planetary Intelligence, Cannon makes the case that mining Luna for platinum group metals (PGM) would be more economically feasible than from near-Earth objects (NEO) because of transit times and operational difficulties due the typical NEO being an “…irregular shaped rubble pile–or basically a space sandcastle of loose dust and boulders–held weakly together by cohesion and microgravity, and spinning rapidly.” In addition, terrestrial ore grades are higher than in NEOs potentially making the economics challenging to compete with mines on Earth. The CEO of asteroid mining company Astroforge, Matt Gialich, begs to differ. He thinks there is a business case for mining NEOs and has venture capital backers that agree. Cannon actually collaborated with Gialich on a paper making the case for mining PGMs from main belt asteroids which SSP covered last year. However, the distances involved make near term profits difficult, and Astroforge is now focusing on NEO’s relatively close to Earth. Gailich also appeared on The Space Show this year and addressed the terrestrial ore grade question when I posed it to him, essentially saying that extraction of PGMs from NEOs could be economically competitive with terrestrial mines because they are so deep and have slim profit margins.
Both Ethos and Astroforge will have mission results in the next decade, although they are targeting completely different markets. Hopefully, both will succeed.
Editors Note: This post is a summary of a presentation by Marshall Martin that was accepted by the Mars Society for their conference that took place August 8 – 11th in Seattle, Washington. Marshall was not able to attend but he gave me permission to publish this distillation of his talk. There are minor edits made to the original text with his permission. Marshall is an accomplished Software Engineer with decades of experience managing multiple high tech projects. He has Bachelor’s Degree in Mathematics and Physics from Northwestern Oklahoma State University and an MBA in Management of Information Systems from Oklahoma City University. He is currently retired and farms with his in-laws in Renfrow, Oklahoma. The views expressed by Marshall in this post are his own.
The Earth is a Biosphere supporting life which has evolved and thrived on sunlight as an energy source for more than 3.4 billion years.
Therefore!
You would think a few smart humans could reverse engineer a small biosphere that would allow life to exist in deep space on only sunlight.
Furthermore, eventually the sun will run short of hydrogen and transition into a red giant making the Earth uninhabitable in a few hundred mission years. Long before that time, we need to have moved into biospheres in space growing crops for food. But for now….
The cost of food in space (when launched from Earth) is too high. My Estimates: [1,2]
Launch Vehicle/Mission
Cost/pound (USD)
Cost/Person/Day* (USD)
Space Shuttle to ISS
$10,000
$50,000
Falcon 9 to ISS
$1134
$5670
Atlas V[3] to Mars (Perseverance[4] Mars Rover)
>$100,000
$500,000
2 year mission to Mars based on Atlas V costs
>$100,000
$365,000,000
* Assuming average consumption rate of 5 pounds/day
If we assume that the SpaceX Starship will reduce launch costs to Mars by at least two orders of magnitude, the cost/person/day for a two year mission would still exceed $3 million dollars.
Solution: farming in space
Starting with a rough estimate, i.e. a SWAG (Scientific wild-ass guestimate): – A space station farm sized at 1 acre producing 120 bushels per acre of wheat, 60 pounds per bushel, 4 crops per year, yields 28,000 pounds of wheat per year. Using Falcon 9 launch costs, this produces a crop valued at $31.7M per year. If your space farm is good for 50 years, the crops would be worth $1.585B when compared to an equivalent amount of food boosted from Earth at current launch costs.
SWAG #2 – I believe a space farm of this size can be built using the von Braun “Wet Workshop” approach applied to a spin gravity space station composed of several Starship upper stages at a projected cost of $513M. More on that later.
Do we know how to build a space farm? NO!
So how do we get there?
Biosphere X would be the next generation of ground-based Biospheres. You may consider the original Biosphere 2[5] as the first prototype. As an initial SWAG, it was marginally successful. As the design basis of a working space farm, it is nowhere close.
Biosphere Y will be placed in Equatorial Low Earth Orbit (ELEO) and will be based on the best iteration of Biosphere X.
Biosphere Z will be a radiation hardened version of Biosphere Y for deep space operations.
Key Metrics:
People per acre is an important metric. Knowing how many people are going to be on a space station or spaceship will imply the size of the farming operations required. [6]
Labor per acre is important. It determines how many farm workers are needed to feed the space population (assuming there will be no automation of farm operations). Note: every American farmer feeds about 100 people. Obviously, if it takes 11 farmers to support 10 people in the biosphere, that is a failure. If it takes 2 farmers to support 10 people that implies that 8 workers are available to work on important space projects. Like building the next biosphere that is bigger and better.
Cost per acre will be the major cost of supporting a person in space. There will be a huge effort to reduce the cost of space farmland.
Water per acre required to grow the crops. Since there is a metric for people per acre, the water per acre would include the water in the sewage system. I would think the water for fish farming would be separate or an option.
Soil per acre is literally the amount of dirt needed in tons. This gets fun. Will Biosphere X use hydroponics, aeroponics, light weight dirt, or high quality top-soil? It could be just standard sandy loam. The quality of the soil will have a big impact on what crops can be grown, which in turn, has a big impact on People per acre.
Watts per acre is the power required to operate a farm. Another major cost of food grown in space. Direct sunlight should be very cheap via windows, at least for biospheres in ELEO. In deep space far removed from the protection of Earth’s magnetic field, radiation would pose a problem for windows unless some sort of angled mirror configuration could be used to reflect sunlight adjacently. Electricity from solar panels has been proven by ISS. Power from a small modular nuclear reactors might be a great backup power for the first orbiting biosphere. Note, diesel fuel would be extremely expensive and emissions would cause pollution to the biosphere in space; that implies, farming would be done using electrical equipment.
Improvements based on the Biosphere 2 experience to make a successful Biosphere X:
Updated computers for: better design, data collection, environmental control systems, subsystem module metrics, communication.
Humans: I suggest 2 men & 2 women and work up from there.
Remote ground support: start big and reduce as fast as possible, goal = zero.
Testing Biosphere X:
Can a team live in the biosphere for two years? (See Biosphere 2 test which was 2 years, i.e. a round trip to Mars and back) How much food was produced? Debug the biosphere. Make upgrades and repeat the tests. Calculate Mean Time to Failure (MTTF), Mean Time to Repair (MTTR), system flexibility, cost of operations, farming metrics (see above). etc.
With enough debugging, Biosphere X will become a comfortable habitat for humans of all ages. This will include old people, children, and perhaps babies. I think a few babies should be born in a Biosphere X (e.g. a few dozen?) before proceeding to Biosphere Y. Obviously, it may be challenging to find motivated families willing to make the generational commitment for long term testing required to realize this noble goal of space settlement. Alternatively, testing of Biosphere X could be simplified and shortened by skipping having babies, deferring this step to the next stage.
Biosphere Y potential configuration:
Once a reasonably well designed Biosphere X has been tested it will be time to build a Biosphere Y. This will require figuring out how to launch and build the first one – not easily done! Let’s posit a reasonably feasible design using orbital spacecraft on the near-term horizon namely, the SpaceX Starship. Using nine upper stages with some modifications to provide spin gravity, sufficient volume could be placed in ELEO for a one acre space farm. Here’s one idea on what it would look like:
A central hub which we will call the 0G module will be composed of three Starship upper stages. Since they would not be returning to Earth, they would not need heat shield tiles, the aerodynamic steerage flaps, nor the three landing rockets. Also, there would not be a need for reserve fuel for landing. These weight reductions would allow the engineers to expand Starship and/or make more built-in structure and/or carry more startup supplies.
We will assume the current length of 165 feet with a 30 foot diameter. Three units placed nose-to-tail make 495 feet. But internally there would be 3 workspaces per unit: Oxygen tank, methane tank, and crew cabin. Times three units makes 9 chambers for zero gravity research.
The three units are connected forward and aft by docking hatches. Since the return to Earth engines have been deleted, the header tanks in the nose of Starship (the purpose of which is to offset the weight of the engines) would be eliminated allowing a docking port to be installed in front. In addition, with the 3 landing engines eliminated, there should be room for a tail end docking port. This will allow crew to move between the three Starship units in the 0G hub.
An aside: I am assuming that the nose of the station is always pointing towards the sun. The header tanks in the nose of the first unit could be retained and filled with water to provide radiation shielding to block solar particle events for the trailing units.
The 0G-units will need access ports on each of their sides to allow a pressurized access and structural support tube extending out to the 1G-units located at 100 meters on either side of the hub. This distance is calculated using Theodore W. Hall’s SpinCalc artificial gravity calculator with a spin rate of 3 rpm. There would be three access tubes extending out to connect to each of the 3 Starship 1G units. I assume the standard Starship has an access door which can be modified to connect to the tube.
One or more standard Starships would deliver supplies and construction materials. They would also collect the three Raptor engines from each modified unit (36 in total) for return to Earth.
I note that the engineering modifications, methods and funding for operations in space to construct Biosphere Y have yet to be determined. However, applying a SWAG for launching the primary hardware to LEO:
This would require 18 starship missions. Using Brian Wang’s estimates of $37M per Starship[21] we get the following cost:
9 Starships times $37M per starship = $333M
18 Starship launches times $10M per launch = $180M
Total SWAG cost: $513M
What’s on the inside?
As mentioned previously, the interior of Biosphere Y will be a Wet Workshop utilizing the empty oxygen and methane tanks in addition to the payload bay volume (roughly 60ft + 39ft + 56ft long, respectively, based on estimates from Wikipedia), for a total length of 155 feet by 30 feet wide for each individual Starship unit. With six 1G Starship units this amounts to about 657, 000 cubic feet of usable volume for our space farm experiencing normal gravity and its associated support equipment (half that for the 0G hub).
Note: Biosphere Y is designed to be placed in Equatorial Low Earth Orbit (ELEO). This orbit is below the Van Allen belts where solar particle events and galactic cosmic ray radiation are reasonably low due to Earth’s protective magnetic field.
Since the first Biosphere Y will spin to produce 1G, eventually experiments will need to be performed to determine the complete Gravity Prescription[12, 13]: 1/2g, 1/3g, 1/6g and maybe lower. You would think this would be required before trying to establish a permanent colony on the Moon and/or Mars in which children will be born. This will probably require several iterations of Biosphere Y space stations to fine tune the optimum mix of plants, animals, and bio-systems.
What other things can be done with a Biosphere Y?
Replace International Space Station
Astronomy
Space Force bases in orbit
Repair satellites
Fueling station
De-orbit space junk
Assemble much larger satellites from kits (cuts cost)
Lunar material processing station
Families including children and babies[13] in space
Biosphere Z:
Once Biosphere Y is proven, it is ready to be radiation hardened to make a Biosphere Z. I assume the radiation hardening material would come from lunar regolith. It is much cheaper than launching a lot of radiation shielding off Earth.
Biosphere Z will be able to do everything that Biosphere Y can do – just further away from Earth.
After an appropriate shake-down cruise (2 years orbiting the Moon, Lagrange 1, and/or Lagrange 2), a Biosphere Z design should be ready to go to Mars. Note several problems will have been solved to ensure positive outcomes for such a journey: • What does the crew do while going to Mars — farming. • Building Mars modules to land on Mars • The crew has been trained and tested for long endurance flights • Other typical Biosphere Y, Z activities
Biosphere S — Major Milestone:
Eventually a biosphere will be manufactured using only space material, thus the designation Biosphere S. Regolith can be processed into dirt. Most metals will come from the Moon and/or Mars surface material. Oxygen is a byproduct of smelting the metals. Carbon and Oxygen can come from the Martian atmosphere. Water can be obtained from ice in permanently shadowed regions at the Moon’s poles or from water bearing asteroids. The first Biosphere S units will probably get Nitrogen from Mars. Later units could get nitrogen, water, and carbon-dioxide from Venus[14]. From the Moon we get KREEP[15]. (potassium, Rare Earth Elements, and Phosphorus) found by the Lunar Prospector mission.
People, plants, livestock, microbes, etc. will come from other Biospheres.
Electronics will probably still come from Earth, at least initially, until technology and infrastructure matures to enable manufacturing of integrated circuits in space.
At this point, humans will have become “A space faring species”
In a century, the number of Biospheres created will go from zero to one hundred per year.
Marshall’s Conjecture:
“400 years after the first baby is born in space, there will be more people living in space than on Earth.” After all, from the time of the signing of The Mayflower Compact to present day is about 400 years and we have 300+ million US citizens vs. the United Kingdom’x 68 million.
The explosion of life:
On Earth there are relationships between the number of humans, the number of support animals and plants. There are currently 8 billion people on Earth and about 1 billion head of cattle. I estimate that there are 100 billion chickens, a half billion pigs, etc.
As the number of Biospheres increases in number, so will the number of people, and the number of support plants and animals. To state it succinctly, there will be an explosion of life in space.
So how many Biosphere S colonies can we build?
Let us assume that they will be spread out evenly in the solar “Goldilocks Zone” (GZ). Creating a spreadsheet with Inputs: inside radius (IR), outside radius (OR) and minimum spacing; Output: Biosphere slot count.
Using: IR of 80,000,000 miles, OR of 120,000,000 miles, (120% to 33% Earth light intensity[16], respectively) and spacing of 1000 miles between Biospheres (both on an orbit and between orbits) you get: 40,000 orbits with the inner orbit having 502,655 slots and the outer orbit having 753,982 slots. This works out to over 25 billion slots for Biospheres to fill this region. Assuming 40 people per Biosphere S implies a space population of over a trillion people. And that is only within the GZ. With ever advancing technology like nuclear power enabling settlement further from the sun, there is no reason that humans can’t expand their reach and numbers throughout the solar system, implying many trillions more.
Can we build that many Biospheres?
Let us assume each Biosphere S has a mass of one million tons (10 times larger than a nuclear powered aircraft carrier[17]) That implies 25.1×1015 tons of metal for all of them. 16 Psche’s mass is estimated at 2.29×1016 tons[18]. There are the larger asteroids, e.g. Ceres (9.4×1017tons), Pallas, Juno, Vesta (2.5×1017 tons) and several others. Assuming the Moon (7.342×1019 tons) is reserved for near Earth use. If the asteroids are not enough, there are the moons of Mars and Jupiter. The other needed elements are readily available throughout the solar system, e.g. nitrogen from Venus, water from Europa, dirt from everywhere, so…
YES! My guess is that it will take 100,000 years to fill the GZ assuming a construction rate of about 250,000 Biospheres per year. That implies an expansion of the population by about 2 million people a year ( I acknowledge these estimates don’t take into account technological advances which will undoubtedly occur over such long stretches of time that may lead to drastically different outcomes. Remember! Its a SWAG!)
Is this Space Manifest Destiny? Is it similar to the Manifest Destiny[19] in America from 1840 to 1900? In my opinion, yes! But this is a very high-tech version of Manifest Destiny. The bottom line assumption is that the Goldilocks Zone is empty — therefore — we must go fill it! Just like the frontiersman of the 1800s.
The First Commandment:
This gives a new interpretation of the phrase from the Book of Genesis,
“Go forth, be fruitful and multiply“[20].
Not only are we people required to have children; but we are required to expand life in many forms wherever we go. For secular readers, this may be interpreted as the natural evolution of life to thrive in new ecosystems beyond Earth. Therefore, the big expansion of life will be in space.
It all starts with Biospheres X, Y, and Z optimized for farming in space
========
When considering humanity’s expansion out into the solar system, look at the concepts put forward above and ask: “Is this proposal missing a key step or two in the development of biospheres in space?”
Editor’s Note: Marshall appeared on The Space Show on August 27 to talk about his space farming vision. You can listen to the archived episode here.
G.K. O’Neill, The High Frontier, 1976, p. 71 – based on Earth-base agriculture – 25 People/Acre; p72 – Optimized for space settlement (i.e. predictable, controlled climate) – 53 People/Acre.
Lunar space settlements will need supplies of water for life support and rocket fuel in the coming water economy in cislunar space. Given how expensive it is to launch water out of Earth’s gravity well, mining the liquid gold in situ on the Moon makes the most economic sense. Until recently, it was thought that most of the water on the Moon was trapped in the permanently shadowed regions (PSRs) in craters near the poles. Although recent data from the Indian Space Research Organization’s Chandrayaan-1 mission has found evidence that water and hydroxyl is more wide spread across all latitudes, the icy deposits in the PSRs may be more concentrated and readily accessible then that bound up in regolith away from the poles.
A team of researchers* in the UK and Italy have developed a lunar rover capable of mining for ice in PSRs. In a paper in Acta Astronautica they describe their approach using an innovative power source, a Radioisotope Power System (RPS) using Americium-241 (241Am). One of the problems for ice mining in a PSR is that by definition, the crater floors never see sunlight and they are as cold as 40o K. Solar powered mining equipment would be severely challenged in this environment as its batteries would have to be frequently recharged at the crater rim and the extreme cryogenic temperatures would affect performance. Rovers utilizing an onboard RPS could operate autonomously and continually in a PSR. 241Am has a half life of 432 years enabling decades of power output without the need to refuel. It is the preferred isotope in Europe because it can be economically separated from spent nuclear fuel produced in civil reactors.
The current state of the art for ice mining methods are either mechanical or thermal. Mechanical processes require beneficiation of excavated regolith by either pneumatic, magnetic or electrostatic separation. SSP has covered one such mechanical extraction technique called Aqua Factorem proposed by Philip Metzger at the University of Central Florida. These techniques require prior assessment of the regolith so that the appropriate type of separation method can be tailored to the specific ice content.
Thermal mining employs various ways of heating the regolith to induce sublimation of the icy deposits directly to water vapor which is then refrozen in cold traps for collection. One method is direct solar heating perfected by George Sowers at the Colorado School of Mines. Heating can also be induced by electricity, microwaves or, as proposed by the authors, radioisotope decay heating. Such methods can skip the step of characterizing the regolith for ice content prior to mining operations.
The rover described in the paper is innovative in that the RPS, which would generate a total of 400W, not only provides electrical power, its waste heat could be utilized for ice mining. The electrical power would be generated by thermal input to a Stirling convertor with an efficiency of ∼20% to produce ∼80W of electric power leaving ∼320W for the mining operations. A related program in Europe is developing such a Stirling convertor using 241Am for deep space applications.
Here’s how it works: waste heat from the RPS is directed to a plate in a sealed enclosure lowered beneath the rover to sublimate icy deposits in the lunar regolith. The extracted water is directed to the cold trap via a pressure differential in the sealed environment. A PSR ice mining campaign would be divided into four Phases. Phase I (Roving to Ice Deposit) starts with the rover operating on battery power to traverse the PSR surface to the target area. Once an ice deposit has been located Phase II (Isolating ICE Deposit) would situate the rover over the deposit and lower a sealing enclosure over the deposit beneath the rover. Phase III (Volitile Extraction) directs waste heat from the RPS to the plate initiating sublimation of the ice in the regolith for collection in the cold trap. This phase lasts about 2 days. Finally, Phase IV (Separation from Deposit) raises the sealing walls after full extraction of the ice deposit. The rover is then ready to move on to the next target area and repeat the process.
Validation of the heat transfer and thermal management was caried out using 3D Finite Element Methods on the rover design and anticipated environment conditions, i.e. the temperatures of the primary rover elements including the sublimation plate, cold trap, and volatiles tube. Four simulations of ice mining were conducted under varying conditions of icy regolith volumetric content ( 1.0, 5.0, and 10.0%, respectively). The experiment showed that most element temperatures were stable for each ice content scenario.
From the results of the study, the researchers conclude that “…it is feasible to extract ice in a PSR crater of the lunar poles using the waste heat from a RPS radiated downwards to the icy Lunar regolith by a sublimation plate. Ice deposits within the regolith can be successfully sublimated, volatiles can be collected in a pressure-controlled environment, directed to a cold trap, and captured.”
____________________________________
* Authors of the paper Ice-Mining Lunar Rover using Americium-241 Radioisotope Power Systems : Marzio Mazzotti 1 2, Hannah M. Sargeant 1, Alessandra Barco 1, Ramy Mesalam 1, Emily Jane Watkinson 1, Richard Ambrosi 1, Michèle Lavagna 2
1 University of Leicester, Space Park Leicester, 92 Corporation Road, LE4 5SP Leicester, UK 2 Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano MI, Italy
At the intersection of AI, swarm robotics and mining technology lies the key to sustainable, affordable space development. Offworld, Inc. is on the cutting edge of this frontier with their suite of diverse robot species that when coordinated with collective intelligence, will enable sustainable in situ resource utilization (ISRU) thereby lowering the cost of establishing settlements on the Moon and beyond, while kickstarting a thriving off Earth economy. In a presentation to the Future In-Space Operations (FISO) Telecon on July 24, Space Systems Architect Dallas Bienhoff described Offworld’s plans for an ambitious demonstration mission called Prospector 1.
In April 2023, OffWorld Europe entered into an agreement with the Luxembourg Space Agency to collaborate on a Lunar ISRU exploration program commissioned by the European Space Agency. The multi-year initiative will develop a processing system focused on harvesting and utilizing lunar ice resources. The program will develop a Lunar Processing Module (LPM) to be integrated into a mobile excavator that will be launched to Moon’s south pole on the Prospector 1 mission currently scheduled for late 2027. The goal of Prospector 1 is to demonstrate the capability of processing icy lunar regolith to produce oxygen and hydrogen. The LPM when loaded with icy regolith will process the lunar soil to extract water, then via electrolysis produce oxygen and hydrogen. The module’s hopper is designed to receive up to 50 kg of regolith and batch process 2.5kg/hour. The unit will be housed on a mobile excavator massed at 2500 kg. Offworld has already completed TRL4 testing on the LPM in their Luxembourg office.
The company is exploring a variety of options for generation of power for the mission. Of course landers provide some minimal power but not nearly enough for processing lunar regolith. One promising system under consideration is the Vertical Solar Array Technology (VSAT) under development by Astorbotic which will provide 10kw of power (only in sunlight). But wait, there’s more! Astrobotic announced this month that they were just awarded a Small Business Innovation Research (SBIR) award by NASA to develop a larger version of the array called VSAT-XL capable of delivering 50kw. Designed to track the sun, VSAT is ideal for location at the lunar south pole where the sun’s rays are at very low elevation and provide semi-permanent illumination on the rims of permanently shadowed craters.
Another innovative alternative is a power source called the Nuclear Thermionic Avalanche Cell (NTAC ) under development by Tamer Space, a company providing a range of power and construction resources for settlements on the Moon, the Cislunar economy and sustainable pioneering of Mars. The device is an electrical generator that converts nuclear gamma-ray photons directly to electric power in a compact, reliable package with high power density capable of long-life operation without refueling. NTAC can provide higher power levels (e.g. starting at 100kw) and is not dependent on the sun to enable operations through the lunar night should Offworld elect to locate their facility far from the Moon’s poles or in permanently shadowed regions. Tamer described their technology at the 2023 Space Resources Roundtable
After Propector 1, Offworld’s follow on plans envision a second Prospector 2 to be launched in the 2029 timeframe. This mission will ramp up capability to include multiple robot species such as an excavator, hauler, and processor. In addition, liquefaction will be added to the process stream (not just gaseous products) and pilot plant capabilities will be demonstrated to reduce risk for the next mission. In 2031, a formal pilot plant will be established with multiple excavators and haulers. The facility will have a fixed processing plant and storage facilities capable of producing tons of water, oxygen, and hydrogen. By the end of 2034, OffWorld plans to launch an industrial scale ISRU plant with output of 100s of tons of volatiles, elements and bulk regolith per year.
Bienhoff said at the conclusion of his presentation that Offworld’s long term vision for lunar operations include: “Industrial scale ISRU, 10s – 100s of tons of product per year – by product [I mean] that’s processed regolith, that’s oxygen, that’s hydrogen, that’s water, that’s perhaps metals. We plan to monetize or use every gram we excavate. That’s a tall order, but in order to have a thriving lunar community, we need to produce as much as we can on the Moon, for the Moon, before we think about exporting from the Moon.”
Mars is currently not very hospitable to life, although it may have been billions of years ago. Many Mars settlement advocates and science fiction writers dream of the turning the Red Planet green by terraforming its atmosphere to make it more Earth-like. Even partially changing smaller regions, i.e. para-terraforming, would be a good first step.
To get things started it would be helpful if there were organisms that could survive the frigid temperatures, low ambient pressure and harsh radiation on Mars while helping to boost the oxygen levels in the atmosphere and assisting with soil fertility. Fortunately, there is a desert moss called Syntrichia caninervis that fits the bill. In a report in the journal The Innovation a team* of Chinese researchers present results of a study that demonstrate the extremotolerance of this plant to conditions on the Red Planet. This hardy organism can withstand temperatures down to a frosty -197°C, has extreme desiccation tolerance recovering within seconds after losing 97% of its water content and is super resistant to gamma radiation.
S. canivervis is a pioneering organism that has wide distribution in extreme biomes on Earth, from the Gurbantunggut Desert in China to the Mojave Desert in the California . It plays a key role in development of biological soil crust, a type of widespread ground cover which is the precursor of fertile soil. A major source of carbon and nitrogen in arid regions, these so called “living skins of the Earth” are responsible for a quarter of the total nitrogen fixation of terrestrial ecosystems. As stated in the paper, this resilient moss “…has evolved several morphological mechanisms to adapt to extreme environments, including overlapping leaves that conserve water and shield the plant from intense sunlight and white awns at the tops of leaves that reflect strong solar radiation and enhance water utilization efficiency.”
To test the desiccation tolerance of S. caninervis the researchers subjected the organism to air-drying treatment followed by measurements of plant phenotypes, water content, photochemical efficiency and changes in leaf angle. The mosses exhibited an exceptional ability to recover rapidly after being dehydrated. Incredibly, the plants were observed to be green when hydrated, turned black as water was gradually extracted, then returned to green only after 2 seconds upon rehydration.
Extended low temperature tolerance was tested by placing two samples of the plants in a freezer set at -80o C for 3 and 5 years, respectively. Short duration extreme cold was studied by subjecting the samples to -196o C in a liquid nitrogen tank for 15 and 30 days. The plants were then cultivated normally to determine their ability to regenerate. Remarkably, in the 3 and 5 year long duration freezer cohorts, both sample branch regeneration rates recovered to approximately 90% of that observed in the control group after 30 days of growth. Similar results were noted for the plants subjected to the 15 and 30 day -196o C treatment with 95% regeneration rate when compared to the controls.
For radiation resistance, samples of S. caninervis were subjected to gradually increasing levels of gamma radiation from 500 Gy up to 16000 Gy. At the upper end of the range the plants died. However, the organism survived exposures up to 2000 Gy with regeneration of branches slightly delayed when compared to controls with no radiation exposure (most plants can’t tolerate more than 1000Gy). A surprising result was noted when exposure to 500 Gy actually increased the regeneration of branches vs no exposure. Humans are sickened by exposure to 2.5 Gy and die upon exposure to 50 Gy. These results demonstrate that S. caninervis has exceptional radiation tolerance.
Finally, simulated Mars conditions were tested by placing S. caninervis in an environmental chamber called the Planetary Atmospheres Simulation Facility operated by the Chinese Academy of Sciences. Parameters were set in the chamber to mimic Mars conditions in mid-latitude regions with temperatures dipping down to −60oC at night and rising to +20oC during the day; atmospheric pressure pegged at 650 Pascals ( 0.09 PSI); Martian atmospheric gasses set to match Martian conditions ( 95% CO2, 3% N2, 1.5% Ar, 0.5% O2); and the expected ultraviolet radiation flux tuned across the UVA, UVB, and UVC wavelength bands. The treatments were applied for 1, 2, 3, and 7 days and then regeneration of branches was measured and compared to control samples. The results showed that S. caninervis can survive in a simulated Mars environment regenerating branches after 15 days of recovery. This hardy moss, having evolved to colonize extremely dry, cold environments on Earth make it ideally suited as a pioneer species to start the process of greening Mars, helping to establish an ecosystem through oxygen production, carbon sequestration, and generation of fertile soil.
Of course terraforming Mars may take many years, perhaps centuries. In the near term, an ancient farming method called intercropping could help boost the yields of vegetables grown on Mars to sustain a healthy settler’s diet. The technique coordinates the cultivation of two or more crops simultaneously in close proximity. In a research article in PLOS ONE scientists at the Wageningen University & Research in the Netherlands describe the method of soil based food production using Martian regolith simulate. The researchers acknowledge that some processing of Martian regolith will be required to remove toxic components such as perchlorates. Research on these techniques is already underway. The study found that intercropping “…shows promise as a method for optimizing food production in Martian colonies.”
* Authors of the Report The extremotolerant desert moss Syntrichia caninervis is a promising pioneer plant for colonizing extraterrestrial environments:
Xiaoshuang Li 1, Wenwan Bai 1 2, Qilin Yang 1 2, Benfeng Yin 1, Zhenlong Zhang 3, Banchi Zhao 3, Tingyun Kuang 4, Yuanming Zhang 1, aoyuan Zhang 1 1 – State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 2 – University of Chinese Academy of Sciences, Beijing 100049, China 3 – National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China 4 – Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
Settlements on the Moon will eventually need to “live off the land” via in situ resource utilization (ISRU). This approach is essential to make settlements economically feasible and self sustaining, obviating the need to expensively import materials up out of Earth’s gravity well. Before we can utilize resources in situ on the Moon we need to understand how to process them there. Researchers at the University of Waterloo in Toronto, Canada are developing technologies for in situ resource processing (ISRP) of lunar soil to produce useful materials, but they will need power. Lots of it.
In a paper presented last October at the 74th International Astronautical Congress in Baku, Azerbaijan, Waterloo Department of Mechanical and Mechatronics Engineering Master of Science Candidate Connor MacRobbie and Team describe how a space-based solar power (SBSP) satellite in lunar orbit could provide the juice for several energy hungry processes that could generate consumables and building materials from lunar regolith.
The study includes a survey of the scientific literature on lunar regolith processing techniques under development, some with experimental results, that would benefit future lunar settlements. Using electrolysis, chemical reduction, pyrolysis and other reactions these methods can be used to extract metals, oxygen, water and other useful commodities from lunar regolith. The techniques have well established pedigrees on Earth, but will need further development for efficient operations on the Moon and will require very elevated temperatures. Thus, the need for an abundant power source like SBSP.
One such promising process is Molten Regolith Electrolysis (MRE). In this method, lunar soil is heated to the melting point in an electrolytic cell. When voltage is applied across the cathode and anode in the cell, the molten regolith decomposes into metal at the cathode and oxygen at the anode, both of which can be collected and stored for use by settlers. No inputs or materials are needed from Earth, only a local power source to melt the untreated regolith.
One of MacRobbie’s supervisors is Dr. John Wen, director of the Laboratory for Emerging Energy Research (LEER) at Waterloo. With the help of Wen and LEER, the Team developed a novel material processing method for MRE. In molten regolith solutions, the constituents and their oxides can be separated by an applied voltage enabling extraction from the solution. Because each individual oxide decomposes at different values, stepping the voltage will facilitate sequential removal and collection of the lunar soil constituents, e.g. iron, titanium, aluminum, silicon, and others; which can be utilized for building and manufacturing. The new method could reduce the cost of processing and provide purer end products. The Team will continue working with LEER on the design of the equipment toward proof of concept with small batches aiming for accurate and repeatable successive extractions of materials using MRE. The only remaining step would be to qualify flight-ready hardware for experiments on the Moon.
In another project LEER is investigating lunar regolith as an input to a power source in space for heating or manufacturing. The embedded metal oxides in lunar soil, when combined with a metal like aluminum, produce thermal energy via a thermite reaction. The aluminum could be sourced from defunct satellites in Earth orbit which has the added benefit of helping to address the orbital debris problem.
Other groups like Swiss-based Astrostom GMBH with their Greater Earth Lunar Power Station are already working on SBSP solutions to provide ample power for lunar surface settlements which could provide sufficient electricity for Waterloo’s ISRP technology. The Astrostom approach would place the power satellite at the L1 Earth-Moon Lagrange point, a location between the Earth and Moon at a distance of 60,000 km above lunar surface. Although not a gravitationally stable location, the station would could maintain a fixed point above a lunar ground station on the Moon’s nearside with minimal station keeping propulsion systems.